| [1] | ABU KWAIK Y, BUMANN D, 2013. Microbial quest for food in vivo: 'nutritional virulence' as an emerging paradigm[J]. Cellular Microbiology, 15(6):882-890. doi: 10.1111/cmi.2013.15.issue-6
 | 
																													
																							| [2] | ACOSTA N, PUKATZKI S, RAIVIO T L, 2015. The Vibrio cholerae Cpx envelope stress response senses and mediates adaptation to low iron[J]. Journal of Bacteriology, 197(2):262-276. doi: 10.1128/JB.01957-14
 | 
																													
																							| [3] | ALICE A F, NAKA H, CROSA J H, 2008. Global gene expression as a function of the iron status of the bacterial cell: influence of differentially expressed genes in the virulence of the human pathogen Vibrio vulnificus[J]. Infection and Immunity, 76(9):4019-4037. doi: 10.1128/IAI.00208-08
 | 
																													
																							| [4] | BELAS R, 2014. Biofilms, flagella, and mechanosensing of surfaces by bacteria[J]. Trends in Microbiology, 22(9):517-527. doi: 10.1016/j.tim.2014.05.002
 | 
																													
																							| [5] | BROPHY M B, NOLAN E M, 2015. Manganese and microbial pathogenesis: sequestration by the Mammalian immune system and utilization by microorganisms[J]. ACS Chemical Biology, 10(3):641-651. doi: 10.1021/cb500792b
 | 
																													
																							| [6] | CALDER T, DE SOUZA SANTOS M, ATTAH V, et al, 2014. Structural and regulatory mutations in Vibrio parahaemolyticus type Ⅲ secretion systems display variable effects on virulence[J]. FEMS Microbiology Letters, 361(2):107-114. doi: 10.1111/fml.2014.361.issue-2
 | 
																													
																							| [7] | CECCARELLI D, HASAN N A, HUQ A, et al, 2013. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors[J]. Frontiers in Cellular and Infection Microbiology, 3:97. | 
																													
																							| [8] | DAVIES B W, BOGARD R W, MEKALANOS J J, 2011. Mapping the regulon of Vibrio cholerae ferric uptake regulator expands its known network of gene regulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 108(30):12467-12472. | 
																													
																							| [9] | DAVIS B M, QUINONES M, PRATT J, et al, 2005. Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae[J]. Journal of Bacteriology, 187(12):4005-4014. doi: 10.1128/JB.187.12.4005-4014.2005
 | 
																													
																							| [10] | FUNAHASHI T, TANABE T, ASO H, et al, 2003. An iron-regulated gene required for utilization of aerobactin as an exogenous siderophore in Vibrio parahaemolyticus[J]. Microbiology, 149(5):1217-1225. doi: 10.1099/mic.0.26066-0
 | 
																													
																							| [11] | FUNAHASHI T, TANABE T, SHIUCHI K, et al, 2009. Identification and characterization of genes required for utilization of desferri-ferrichrome and aerobactin in Vibrio parahaemolyticus[J]. Biological and Pharmaceutical Bulletin, 32(3):359-365. doi: 10.1248/bpb.32.359
 | 
																													
																							| [12] | GODE-POTRATZ C J, CHODUR D M, MCCARTER L L, 2010. Calcium and iron regulate swarming and type Ⅲ secretion in Vibrio parahaemolyticus[J]. Journal of Bacteriology, 192(22):6025-6038. doi: 10.1128/JB.00654-10
 | 
																													
																							| [13] | HACKNEY C R, KLEEMAN E G, RAY B, et al, 1980. Adherence as a method of differentiating virulent and avirulent strains of Vibrio parahaemolyticus[J]. Applied and Environmental Microbiology, 40(3):652-658. doi: 10.1128/aem.40.3.652-658.1980
 | 
																													
																							| [14] | HIYOSHI H, KODAMA T, IIDA T, et al, 2010. Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice[J]. Infection and Immunity, 78(4):1772-1780. doi: 10.1128/IAI.01051-09
 | 
																													
																							| [15] | HUBBARD T P, CHAO M C, ABEL S, et al, 2016. Genetic analysis of Vibrio parahaemolyticus intestinal colonization[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(22):6283-6288. | 
																													
																							| [16] | KEARNS D B, 2010. A field guide to bacterial swarming motility[J]. Nature Reviews Microbiology, 8(9):634-644. doi: 10.1038/nrmicro2405
 | 
																													
																							| [17] | KINKEL M D, EAMES S C, PHILIPSON L H, et al, 2010. Intraperitoneal injection into adult zebrafish[J]. Journal of Visualized Experiments: JoVE, (42):2126. | 
																													
																							| [18] | KOVACH M E, PHILLIPS R W, ELZER P H, et al, 1994. pBBR1MCS: a broad-host-range cloning vector[J]. Biotechniques, 16(5):800-802. | 
																													
																							| [19] | LEÓN-SICAIROS N, ANGULO-ZAMUDIO U A, DE LA GARZA M, et al, 2015. Strategies of Vibrio parahaemolyticus to acquire nutritional iron during host colonization[J]. Frontiers in Microbiology, 6:702. | 
																													
																							| [20] | LI LINGZHI, MENG HONGMEI, GU DAN, et al, 2019. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis[J]. Microbiological Research, 222:43-51. doi: 10.1016/j.micres.2019.03.003
 | 
																													
																							| [21] | MAKINO K, OSHIMA K, KUROKAWA K, et al, 2003. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae[J]. The Lancet, 361(9359):743-749. doi: 10.1016/S0140-6736(03)12659-1
 | 
																													
																							| [22] | MCCARTER L, SILVERMAN M, 1989. Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus[J]. Journal of Bacteriology, 171(2):731-736. doi: 10.1128/jb.171.2.731-736.1989
 | 
																													
																							| [23] | MCCARTER L, SILVERMAN M, 1990. Surface-induced swarmer cell differentiation of Vibrio parahaemoiyticus[J]. Molecular Microbiology, 4(7):1057-1062. doi: 10.1111/mmi.1990.4.issue-7
 | 
																													
																							| [24] | MEY A R, CRAIG S A, PAYNE S M, 2005a. Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation[J]. Infection and Immunity, 73(9):5706-5719. doi: 10.1128/IAI.73.9.5706-5719.2005
 | 
																													
																							| [25] | MEY A R, WYCKOFF E E, KANUKURTHY V, et al. 2005b. Iron and fur regulation in Vibrio cholerae and the role of fur in virulence[J]. Infection and Immunity, 73(12):8167-8178. doi: 10.1128/IAI.73.12.8167-8178.2005
 | 
																													
																							| [26] | MIETHKE M, MARAHIEL M A, 2007. Siderophore-based iron acquisition and pathogen control[J]. Microbiology and Molecular Biology Reviews, 71(3):413-451. doi: 10.1128/MMBR.00012-07
 | 
																													
																							| [27] | MILTON D L, NORQVIST A, WOLF-WATZ H, 1992. Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarum[J]. Journal of Bacteriology, 174(22):7235-7244. doi: 10.1128/jb.174.22.7235-7244.1992
 | 
																													
																							| [28] | MILTON D L, O'TOOLE R, HORSTEDT P, et al, 1996. Flagellin A is essential for the virulence of Vibrio anguillarum[J]. Journal of Bacteriology, 178(5):1310-1319. doi: 10.1128/jb.178.5.1310-1319.1996
 | 
																													
																							| [29] | MORABE M L, MCCARTER L L, 2020. Vibrio parahaemolyticus FcrX, a Fur-controlled regulator that inhibits repression by Fur[J]. Molecular Microbiology, 114(1):77-92. doi: 10.1111/mmi.v114.1
 | 
																													
																							| [30] | MUHAMMAD M H, IDRIS A L, FAN X, et al, 2020. Beyond risk: bacterial biofilms and their regulating approaches[J]. Frontiers in Microbiology, 11:928. doi: 10.3389/fmicb.2020.00928
 | 
																													
																							| [31] | O'TOOLE G A, KOLTER R, 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis[J]. Molecular Microbiology, 28(3):449-461. doi: 10.1046/j.1365-2958.1998.00797.x
 | 
																													
																							| [32] | PAYNE S M, 1993. Iron acquisition in microbial pathogenesis[J]. Trends in Microbiology, 1(2):66-69. doi: 10.1016/0966-842X(93)90036-Q
 | 
																													
																							| [33] | PAYNE S M, MEY A R, WYCKOFF E E, 2016. Vibrio iron transport: evolutionary adaptation to life in multiple environments[J]. Microbiology and Molecular Biology Reviews, 80(1):69-90. doi: 10.1128/MMBR.00046-15
 | 
																													
																							| [34] | RAYMOND K N, DERTZ E A, KIM S S, 2003. Enterobactin: an archetype for microbial iron transport[J]. Proceedings of the National Academy of Sciences of the United States of America, 100(7):3584-3588. | 
																													
																							| [35] | SELIGER S S, MEY A R, VALLE A-M, et al, 2001. The two TonB systems of Vibrio cholerae: redundant and specific functions[J]. Molecular Microbiology, 39(3):801-812. doi: 10.1046/j.1365-2958.2001.02273.x
 | 
																													
																							| [36] | SOTO-RODRIGUEZ S A, GOMEZ-GIL B, LOZANO-OLVERA R, et al, 2015. Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico[J]. Applied and Environmental Microbiology, 81(5):1689-1699. doi: 10.1128/AEM.03610-14
 | 
																													
																							| [37] | STORK M, DI LORENZO M, MOURIÑO S, et al, 2004. Two tonB systems function in iron transport in Vibrio anguillarum, but only one is essential for virulence[J]. Infection and Immunity, 72(12):7326-7329. doi: 10.1128/IAI.72.12.7326-7329.2004
 | 
																													
																							| [38] | TANABE T, FUNAHASHI T, SHIUCHI K, et al, 2012. Characterization of Vibrio parahaemolyticus genes encoding the systems for utilization of enterobactin as a xenosiderophore[J]. Microbiology, 158(8):2039-2049. doi: 10.1099/mic.0.059568-0
 | 
																													
																							| [39] | TANABE T, KATO A, SHIUCHI K, et al, 2014. Regulation of the expression of the Vibrio parahaemolyticus peuA gene encoding an alternative ferric enterobactin receptor[J]. PLoS One, 9(8):e105749. doi: 10.1371/journal.pone.0105749
 | 
																													
																							| [40] | VAN LAAR T A, ESANI S, BIRGES T J, et al, 2018. Pseudomonas aeruginosa gshA mutant is defective in biofilm formation, swarming, and pyocyanin production[J]. mSphere, 3(2):e00155-18. | 
																													
																							| [41] | WANG QIYAO, LIU QIN, CAO XIAODAN, et al, 2008. Characterization of two TonB systems in marine fish pathogen Vibrio alginolyticus: their roles in iron utilization and virulence[J]. Archives of Microbiology, 190(5):595-603. doi: 10.1007/s00203-008-0407-1
 | 
																													
																							| [42] | YANG A, TANG W S, SI TIEYAN, et al, 2017. Influence of physical effects on the swarming motility of Pseudomonas aeruginosa[J]. Biophysical Journal, 112(7):1462-1471. doi: 10.1016/j.bpj.2017.02.019
 | 
																													
																							| [43] | YU YING, FANG LIHUA, ZHANG YAN, et al, 2015. VgrG2 of type VI secretion system 2 of Vibrio parahaemolyticus induces autophagy in macrophages[J]. Frontiers in Microbiology, 6:168. | 
																													
																							| [44] | ZHANG HUAN, WANG BENBEN, WU WENXING, et al, 2020. Insights into irr and rirA gene regulation on the virulence of Brucella melitensis M5-90[J]. Canadian Journal of Microbiology, 66(5):351-358. doi: 10.1139/cjm-2019-0393
 | 
																													
																							| [45] | ZHANG WEIWEI, LIANG WEIKANG, CHENGHUA L, 2016. Inhibition of marine Vibrio sp. by pyoverdine from Pseudomonas aeruginosa PA1[J]. Journal of Hazardous Materials, 302:217-224. doi: 10.1016/j.jhazmat.2015.10.003
 |