[1] |
刘宁, 莫利, 2015. “一带一路” 科技链: 斯里兰卡篇[J]. 科学新闻, 17(8): 94-96.
|
|
LIU NING, MO LI, 2015. “Onebelt, oneroad” technologychain: SriLanka[J]. Science News, 17(8): 94-96 (in Chinese).
|
[2] |
彭朝勇, 杨建思, 薛兵, 等, 2014. 一体化低功耗宽频带数字地震仪研制[J]. 地震学报, 36(1): 146-155, 159.
|
|
PENG CHAOYONG, YANG JIANSI, XUE BING, et al, 2014. Development of a low-power broadband seismometer-integrated data logger[J]. Acta Seismologica Sinica, 36(1): 146-155, 159 (in Chinese with English abstract).
|
[3] |
吴良士, 秦思婷, 2014. 斯里兰卡地质构造与区域成矿基本特征[J]. 矿床地质, 33(1): 233-236.
|
|
WU LIANGSHI, QIN SITING, 2014. Geological structure andbasic characteristics ofregional mineralization in SriLanka[J]. Mineral Deposits, 33(1): 233-236 (in Chinese).
|
[4] |
杨冬冬, 邱海军, 胡胜, 等, 2020. “一带一路”地区地质灾害时空分布特征及防治对策[J]. 科技导报, 38(16): 45-52.
|
|
YANG DONGDONG, QIU HAIJUN, HU SHENG, et al, 2020. Temporal and spatial distributions of geo-hazards along the Belt and Road and policy recommendations for disaster prevention[J]. Science & Technology Review, 38(16): 45-52 (in Chinese with English abstract).
|
[5] |
赵磊, 张艳斌, MALAVIARACHCHI SANJEEWA PRABHATH KUMARA, 等, 2021. 斯里兰卡地质演化研究的进展与评述: 岩石组合、变质演化及其与冈瓦纳大陆的关系[J]. 岩石学报, 37(5): 1287-1320.
|
|
ZHAO LEI, ZHANG YANBIN, KUMARA M S P, et al, 2021. A review and appraisal on the study progress of the geological evolution of Sri Lanka: Rock associations, metamorphism and their relations with Gondwana[J]. Acta Petrologica Sinica, 37(5): 1287-1320 (in Chinese with English abstract).
|
[6] |
宗健业, 孙新蕾, 张鹏, 2020. 利用HVSR方法研究广州地区的场地效应及估算地震灾害特征[J]. 地震地质, 42(3): 628-639.
|
|
ZONG JIANYE, SUN XINLEI, ZHANG PENG, 2020. Site effect and earthquake disaster characteristics in Guangzhou area from horizontal-to-vertical spectral ratio (hvsr) method[J]. Seismology and Geology, 42(3): 628-639 (in Chinese with English abstract).
|
[7] |
AMALAN K, RATNAYAKE A S, RATNAYAKE N P, et al, 2018. Influence of nearshore sediment dynamics on the distribution of heavy mineral placer deposits in Sri Lanka[J]. Environmental Earth Sciences, 77(21): 737.
|
[8] |
ATHAUDA A M M G I U B, DHARMAPRIYA P L, MALAVIARACHCHI S P K, et al, 2024. Geochemical signatures of metapelites in the highland complex, Sri Lanka and Trivandrum Block, India: implications for provenance, nature and tectonic setting of their source protoliths[J]. Island Arc, 33(1): e12529.
|
[9] |
CAO LINGMIN, HE XIAOBO, YUAN HUAIYU, et al, 2024. Upper-mantle seismic anisotropy in the southwestern North Island, New Zealand: Implications for regional upper-mantle and slab deformation[J]. Tectonophysics, 887: 230455.
|
[10] |
COORAY P G, 1994. The Precambrian of Sri Lanka: a historical review[J]. Precambrian Research, 66(1/2/3/4): 3-18.
|
[11] |
DREILING J, TILMANN F, YUAN XIAOHUI, et al, 2020. Crustal structure of Sri Lanka derived from joint inversion of surface wave dispersion and receiver functions using a Bayesian approach[J]. Journal of Geophysical Research: Solid Earth, 125(5): e2019JB018688.
|
[12] |
DUSHYANTHA N P, HEMALAL P V A, JAYAWARDENA C L, et al, 2019. Application of geochemical techniques for prospecting unconventional phosphate sources: a case study of the lake sediments in Eppawala area Sri Lanka[J]. Journal of Geochemical Exploration, 201: 113-124.
|
[13] |
FÄH D, KIND F, GIARDINI D, 2003. Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects[J]. Journal of Seismology, 7(4): 449-467.
|
[14] |
GUNATILAKA A, 2007. Role of basin-wide landslides in the formation of extensive alluvial gemstone deposits in Sri Lanka[J]. Earth Surface Processes and Landforms, 32(12): 1863-1873.
|
[15] |
GUNATILLAKE D, 2007. The 2004 Tsunami in Sri Lanka: Destruction and recovery[J]. Geography, 92(3): 285-293.
|
[16] |
HÖLZL S, HOFMANN A W, TODT W, et al, 1994. U-Pb geochronology of the Sri Lankan basement[J]. Precambrian Research, 66(1/2/3/4): 123-149.
|
[17] |
HOUSER C, HAMILTON S, 2009. Sensitivity of post-hurricane beach[J]. Earth Surface Process and Landforms, 34( March): 613-628.
|
[18] |
KEHELPANNALA KVW, 2004. Arc Accretion Around Sri Lanka During the Assembly of Gondwana[J]. Gondwana Research, 7(4S): 41-46.
|
[19] |
KRÖNER A, COORAY P G, VITANAGE P W, 1991. Lithotectonic subdivision of the Pre-cambrian basement in Sri Lanka[M]//KRÖNER A, The crystalline crust of Sri Lanka, Part Ⅰ. Summary of research of the German-Sri Lankan consortium. Geological Survey Department, Sri Lanka: 5-21.
|
[20] |
KRÖNER A, WILLIAMS I S, COMPSTON W, et al, 1987. Zircon ion microprobe dating of high-grade rocks in Sri Lanka[J]. The Journal of Geology, 95(6): 775-791.
|
[21] |
LI CHENG, YAO HUAJIAN, FANG HONGJIAN, et al, 2016. 3D near-surface shear-wave velocity structure from ambient-noise tomography and borehole data in the Hefei urban area, China[J]. Seismological Research Letters, 87(4): 882-892.
|
[22] |
MASCANDOLA C, MASSA M, BARANI S, et al, 2017. Long-period amplification in deep alluvial basins and consequences for site-specific probabilistic seismic-hazard analysis: an example from the Po plain (northern Italy)[J]. Bulletin of the Seismological Society of America, 107(2): 770-786.
|
[23] |
MATHAVAN V, PRAME W K B N, COORAY P G, 1999. Geology of the high grade Proterozoic terrains of Sri Lanka, and the assembly of Gondwana: an update on recent developments[J]. Gondwana Research, 2(2): 237-250.
|
[24] |
MILISENDA C C, LIEWA T C, HOFMANNA A W, et al, 1988. Isotopic mapping of age provinces in Precambrian high-grade terrains: Sri Lanka[J]. The Journal of Geology, 96(5): 608-615.
|
[25] |
MILISENDA C C, LIEWA T C, HOFMANNA A W, et al, 1994. Nd isotopic mapping of the Sri Lanka basement: update, and additional constraints from Sr isotopes[J]. Precambrian Research, 66(1/2/3/4): 95-110.
|
[26] |
PAROLAI S, 2002. New relationships between vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the cologne area (Germany)[J]. Bulletin of the Seismological Society of America, 92(6): 2521-2527.
|
[27] |
PICOZZI M, PAROLAI S, BINDI D, et al, 2009. Characterization of shallow geology by high-frequency seismic noise tomography[J]. Geophysical Journal International, 176(1): 164-174.
|
[28] |
SASSA K, MATSUNAMI K, DOAN L, et al, 2023. The 2023. 4. 24 Hambantota-offshore earthquake and microearthquakes in Sri Lanka and the landslide risk evaluation in a nearby slope by post-rainfall earthquakes[J]. Landslides, 20(8): 1771-1779.
|
[29] |
SUMANARATHNA A R, 2018. Geology of Sri Lanka: a journey through ancient landscapes and unique geological features[J]. Journal of Eco Astronomy, 01(01): 60-89.
|
[30] |
VANACKER V, VON BLANCKENBURG F, HEWAWASAM T, et al, 2007. Constraining landscape development of the Sri Lankan escarpment with cosmogenic nuclides in river sediment[J]. Earth and Planetary Science Letters, 253(3/4): 402-414.
|
[31] |
WANG WEI, CAWOOD P A, PANDIT M K, et al, 2019. No collision between Eastern and Western Gondwana at their northern extent[J]. Geology, 47(4): 308-312.
|
[32] |
WICKRAMASINGHE W A G K, MADUGALLA T B N S, ATHURUPANA B, et al, 2024. An unusual occurrence of carbonatites derived from the crust in the UHT granulite facies metamorphic terrain of Sri Lanka[J]. Precambrian Research, 410: 107502.
|
[33] |
ZHAO LEI, LAKSHITHA DHARMAPRIYA P, ZHANG YANBIN, et al, 2023. Expanding azania at the heart of Gondwana: terrane correlation from southern India to Sri Lanka[J]. Precambrian Research, 395: 107149.
|