[1] |
BEG PAKLAR G, VILIBIĆ I, GRBEC B, et al, 2020. Record-breaking salinities in the middle Adriatic during summer 2017 and concurrent changes in the microbial food web[J]. Progress in Oceanography, 185: 102345.
|
[2] |
BERGH O, BØRSHEIM K Y, BRATBAK G, et al, 1989. High abundance of viruses found in aquatic environments[J]. Nature, 340(6233): 467-468.
|
[3] |
BOUVY M, GOT P, BETTAREL Y, et al, 2015. Importance of predation and viral lysis for bacterial mortality in a tropical western Indian coral-reef ecosystem (Toliara, Madagascar)[J]. Marine and Freshwater Research, 66(11): 1009.
|
[4] |
BUITENHUIS E T, LOMAS M W, et al, 2012. Picoheterotroph (Bacteria and Archaea) biomass distribution in the global ocean[J]. Earth System Science Data, 4(1): 101-106.
|
[5] |
BURNS C W, STOCKNER J G, 1991. Picoplankton in six New Zealand Lakes: abundance in relation to season and trophic state[J]. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 76(4): 523-536.
|
[6] |
CALBET A, 2008. The trophic roles of microzooplankton in marine systems[J]. ICES Journal of Marine Science, 65(3): 325-331.
|
[7] |
CHEN ZHUO, GU TING, SUN JUN, 2023. Disentangling environmental effects on picophytoplankton communities in the Eastern Indian Ocean[J]. Environmental Research, 225: 115635.
|
[8] |
EVANS C, ARCHER S D, JACQUET S, et al, 2003. Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population[J]. Aquatic Microbial Ecology, 30: 207-219.
|
[9] |
EVANS C, BRANDSMA J, MEREDITH M P, et al, 2021. Shift from carbon flow through the microbial loop to the viral shunt in coastal Antarctic waters during austral summer[J]. Microorganisms, 9(2): 460.
|
[10] |
FLOMBAUM P, GALLEGOS J L, GORDILLO R A, et al, 2013. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(24): 9824-9829.
|
[11] |
FLOMBAUM P, WANG WEILEI, PRIMEAU F W, et al, 2020. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming[J]. Nature Geoscience, 13(2): 116-120.
|
[12] |
FUHRMAN J A, NOBLE R T, 1995. Viruses and protists cause similar bacterial mortality in coastal seawater[J]. Limnology and Oceanography, 40(7): 1236-1242.
|
[13] |
GAINER P J, POUND H L, LARKIN A A, et al, 2017. Contrasting seasonal drivers of virus abundance and production in the North Pacific Ocean[J]. PLoS One, 12(9): e0184371.
|
[14] |
GEREA M, QUEIMALIÑOS C, UNREIN F, 2019. Grazing impact and prey selectivity of picoplanktonic cells by mixotrophic flagellates in oligotrophic lakes[J]. Hydrobiologia, 831(1): 5-21.
|
[15] |
GINESTET C, 2011. ggplot2: elegant graphics for data analysis[J]. Journal of the Royal Statistical Society: Series A (Statistics in Society), 174(1): 245-246.
|
[16] |
GRÖMPING U, 2006. Relative importance for linear regression in R: the package relaimpo[J]. Journal of Statistical Software, 17(1): 1-27.
|
[17] |
GU BOWEI, LEE C, MA XIAO, et al, 2020. Effect of warming on growth, grazing, and community composition of free-living bacterioplankton in subtropical coastal waters during winter and summer[J]. Frontiers in Microbiology, 11: 534404.
|
[18] |
HENEGHAN R F, HOLLOWAY-BROWN J, GASOL J M, et al, 2024. The global distribution and climate resilience of marine heterotrophic prokaryotes[J]. Nature Communications, 15(1): 6943.
|
[19] |
HU CHEN, CHEN XIAOWEI, YU LIUQIAN, et al, 2020. Elevated contribution of low nucleic acid prokaryotes and viral lysis to the prokaryotic community along the nutrient gradient from an estuary to open ocean transect[J]. Frontiers in Microbiology, 11: 612053.
|
[20] |
JACQUET S, DOMAIZON I, PERSONNIC S, et al, 2005. Estimates of protozoan- and viral-mediated mortality of bacterioplankton in Lake Bourget (France)[J]. Freshwater Biology, 50(4): 627-645.
|
[21] |
JIAO SHUO, YANG YUNFENG, XU YIQIN, et al, 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across Eastern China[J]. The ISME Journal, 14(1): 202-216.
|
[22] |
LANDRY M R, HASSETT R P, 1982. Estimating the grazing impact of marine micro-zooplankton[J]. Marine Biology, 67(3): 283-288.
|
[23] |
LANDRY M R, STUKEL M R, SELPH K E, et al, 2023. Coexisting picoplankton experience different relative grazing pressures across an ocean productivity gradient[J]. Proceedings of the National Academy of Sciences of the United States of America, 120(44): e2220771120.
|
[24] |
RAO D V, HARRISON W G, et al, 1983. Autotrophic picoplankton in the tropical ocean[J]. Science, 219(4582): 292-295.
|
[25] |
MOJICA K D A, BRUSSAARD C P D, 2020. Significance of viral activity for regulating heterotrophic prokaryote community dynamics along a meridional gradient of stratification in the northeast Atlantic Ocean[J]. Viruses, 12(11): 1293.
|
[26] |
MOJICA K D A, HUISMAN J, WILHELM S W, et al, 2016. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean[J]. The ISME Journal, 10(2): 500-513.
|
[27] |
NING X, CHAI F, XUE H, et al, 2004. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea[J]. Journal of Geophysical Research: Oceans, 109(C10): C10005.
|
[28] |
ORDULJ M, KRSTULOVIĆ N, ŠANTIĆ D, et al, 2015. Distribution of marine viruses in the central and south adriatic sea[J]. Mediterranean Marine Science, 16(1): 65.
|
[29] |
PARSONS R J, BREITBART M, LOMAS M W, et al, 2012. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea[J]. The ISME Journal, 6(2): 273-284.
|
[30] |
PARVATHI A, ZHONG X, PRADEEP RAM A S, et al, 2014. Dynamics of auto- and heterotrophic picoplankton and associated viruses in Lake Geneva[J]. Hydrology and Earth System Sciences, 18(3): 1073-1087.
|
[31] |
PERNTHALER J, 2005. Predation on prokaryotes in the water column and its ecological implications[J]. Nature Reviews Microbiology, 3(7): 537-546.
|
[32] |
POLIMENE L, SAILLEY S, CLARK D, et al, 2016. Biological or microbial carbon pump? The role of phytoplankton stoichiometry in ocean carbon sequestration[J]. Journal of Plankton Research, 39(2): 180-186.
|
[33] |
PROCTOR L M, FUHRMAN J A, 1990. Viral mortality of marine bacteria and cyanobacteria[J]. Nature, 343(6253): 60-62.
|
[34] |
RICHARDSON T L, 2019. Mechanisms and pathways of small-phytoplankton export from the surface ocean[J]. Annual Review of Marine Science, 11: 57-74.
|
[35] |
RICHARDSON T L, JACKSON G A, 2007. Small phytoplankton and carbon export from the surface ocean[J]. Science, 315(5813): 838-840.
|
[36] |
SÁNCHEZ O, FERRERA I, MABRITO I, et al, 2020. Seasonal impact of grazing, viral mortality, resource availability and light on the group-specific growth rates of coastal Mediterranean bacterioplankton[J]. Scientific Reports, 10(1): 19773.
|
[37] |
SIEBURTH J M, SMETACEK V, LENZ J, 1978. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions 1[J]. Limnology and Oceanography, 23(6): 1256-1263.
|
[38] |
SOHM J A, AHLGREN N A, THOMSON Z J, et al, 2016. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron[J]. The ISME Journal, 10(2): 333-345.
|
[39] |
ŠOLIĆ M, ŠANTIC D, ŠESTANOVIC S, et al, 2018. The effect of temperature increase on microbial carbon fluxes in the Adriatic Sea: an experimental approach[J]. FEMS Microbiology Ecology, 94(10): 5078343.
|
[40] |
ŠOLIĆ M, ŠANTIĆ D, ŠESTANOVIĆ S, et al, 2019. Temperature and phosphorus interacts in controlling the picoplankton carbon flux in the Adriatic Sea: an experimental versus field study[J]. Environmental Microbiology, 21(7): 2469-2484.
|
[41] |
ŠOLIĆ M, ŠANTIĆ D, ŠESTANOVIĆ S, et al, 2022. Changing ecological conditions in the marine environment generate different microbial food web structures in a repeatable manner[J]. Frontiers in Marine Science, 8: 811155.
|
[42] |
SUTTLE C A, 2007. Marine viruses: major players in the global ecosystem[J]. Nature Reviews Microbiology, 5(10): 801-812.
|
[43] |
THINGSTAD T F, 2000. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems[J]. Limnology and Oceanography, 45(6): 1320-1328.
|
[44] |
TIJDENS M, VAN DE WAAL D B, SLOVACKOVA H, et al, 2008. Estimates of bacterial and phytoplankton mortality caused by viral lysis and microzooplankton grazing in a shallow eutrophic lake[J]. Freshwater Biology, 53(6): 1126-1141.
|
[45] |
TSAI A Y, GONG G C, CHAO C F, 2016. Contribution of viral lysis and nanoflagellate grazing to bacterial mortality at surface waters and deeper depths in the coastal ecosystem of subtropical western Pacific[J]. Estuaries and Coasts, 39(5): 1357-1366.
|
[46] |
TSAI A Y, GONG G C, et al, 2015a. Estimates of bacterioplankton and Synechococcus spp. mortality from nanoflagellate grazing and viral lysis in the subtropical Danshui River estuary[J]. Estuarine, Coastal and Shelf Science, 153: 54-61.
|
[47] |
TSAI A Y, GONG G C, SHIAU W, 2015b. Viral lysis and nanoflagellate grazing on prokaryotes: effects of short-term warming in a coastal subtropical marine system[J]. Hydrobiologia, 751(1): 43-54.
|
[48] |
WANG MIN, LIANG YANTAO, BAI XIAOGE, et al, 2010. Distribution of microbial populations and their relationship with environmental parameters in the coastal waters of Qingdao, China[J]. Environmental Microbiology, 12(7): 1926-1939.
|
[49] |
WEI YUQIU, GU TING, ZHANG GUICHENG, et al, 2022. Exploring the dynamics of marine picophytoplankton among the Yellow Sea, Indian Ocean and Pacific Ocean: the importance of temperature and nitrogen[J]. Environmental Research, 214: 113870.
|
[50] |
WEITZ J S, STOCK C A, WILHELM S W, et al, 2015. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes[J]. The ISME Journal, 9(6): 1352-1364.
|
[51] |
WIGINGTON C H, SONDEREGGER D, BRUSSAARD C P D, et al, 2016. Re-examination of the relationship between marine virus and microbial cell abundances[J]. Nature Microbiology, 1: 15024.
|
[52] |
WOMMACK K E, COLWELL R R, 2000. Virioplankton: viruses in aquatic ecosystems[J]. Microbiology and Molecular Biology Reviews, 64(1): 69-114.
|
[53] |
WORDEN A Z, NOLAN J K, PALENIK B, 2004. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component[J]. Limnology and Oceanography, 49(1): 168-179.
|
[54] |
ZHANG JIANDONG, LI YINENG, LONG LIJUAN, et al, 2024. Small temporal variation in abundance of virioplankton compared to bacterioplankton and phytoplankton in two bays in the northern South China Sea[J]. Journal of Oceanology and Limnology, 42(4): 1130-1142.
|
[55] |
ZIMMERMAN A E, HOWARD-VARONA C, NEEDHAM D M, et al, 2020. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems[J]. Nature Reviews Microbiology, 18(1): 21-34.
|