| [1] | 董凤午, 1981. 沙质海岸岸滩坡度的确定[J]. 水利水运科学研究, (1): 91-102. (in Chinese) | 
																													
																							| [2] | 黄光玮, 丛新, 夏子龙, 等, 2021. 一种挺水植物群砂质动床模型布置方法: 中国, 112681215A[P](in Chinese) | 
																													
																							| [3] | 蒋昌波, 管喆, 陈杰, 等, 2017. 红树林对规则波作用下岸滩剖面变化影响实验研究[J]. 热带海洋学报, 36(1): 95-105. | 
																													
																							|  | JIANG CHANGBO, GUAN ZHE, CHEN JIE, et al, 2017. Experimental study on changes of cross-shore beach profile by regular waves under the influence of mangroves[J]. Journal of Tropical Oceanography, 36(1): 95-105. (in Chinese with English abstract) | 
																													
																							| [4] | 邱大洪, 2011. 工程水文学[M]. 4版. 北京: 人民交通出版社: 131 (in Chinese) | 
																													
																							| [5] | 尹硕, 潘毅, 陈永平, 2017. 基于局部拟合法的低能沙质海岸比尺设计[J]. 水利水运工程学报, (4): 43-51. | 
																													
																							|  | YIN SHUO, PAN YI, CHEN YONGPING, 2017. Scale design based on local curve fitting method for low-energy sandy beach[J]. Hydro-Science and Engineering, (4): 43-51. (in Chinese with English abstract) | 
																													
																							| [6] | ANDERSON M E, SMITH J M, 2014. Wave attenuation by flexible, idealized salt marsh vegetation[J]. Coastal Engineering, 83: 82-92. doi: 10.1016/j.coastaleng.2013.10.004
 | 
																													
																							| [7] | CONG XIN, KUANG CUIPING, HAN XUEJIAN, et al, 2021. Experimental observation on wave and profile changes in a sandbar-lagoon system with emergent aquatic plants on the sandbar crest[C]// Proceedings of the 31st International Ocean and Polar Engineering Conference. Rhodes: The International Society of Offshore and Polar Engineers (ISOPE): 2216-2222. | 
																													
																							| [8] | FEAGIN R A, FURMAN M, SALGADO K, et al, 2019. The role of beach and sand dune vegetation in mediating wave run up erosion[J]. Estuarine, Coastal and Shelf Science, 219: 97-106. doi: 10.1016/j.ecss.2019.01.018
 | 
																													
																							| [9] | GODA Y, SUZUKI Y, 1976. Estimation of incident and reflected waves in random wave experiments[C]// Proceedings of the 15th International Conference on Coastal Engineering. Hawaii: ICCE: 828-845. | 
																													
																							| [10] | HANLEY M E, BOUMA T J, MOSSMAN H L, 2020. The gathering storm: optimizing management of coastal ecosystems in the face of a climate-driven threat[J]. Annals of Botany, 125(2): 197-212. doi: 10.1093/aob/mcz204
 | 
																													
																							| [11] | JACKSON D W T, SHORT A, 2020. Sandy beach morphodynamics[M]. Amsterdam: Elsevier. | 
																													
																							| [12] | KUANG CUIPING, HUANG GUANGWEI, CONG XIN, et al, 2021. Experimental study on wave attenuation by a sandbar with emerged rigid vegetation[C]// Proceedings of the 31st International Ocean and Polar Engineering Conference. Rhodes: The International Society of Offshore and Polar Engineers (ISOPE): 2211-2215. | 
																													
																							| [13] | LEI Jiarui, NEPF H, 2019. Wave damping by flexible vegetation: connecting individual blade dynamics to the meadow scale[J]. Coastal Engineering, 147: 138-148. doi: 10.1016/j.coastaleng.2019.01.008
 | 
																													
																							| [14] | MA YUE, KUANG CUIPING, HAN XUEJIAN, et al, 2020. Experimental study on the influence of an artificial reef on cross-shore morphodynamic processes of a wave-dominated beach[J]. Water, 12(10): 2947. doi: 10.3390/w12102947
 | 
																													
																							| [15] | MAZA M, LARA J L, LOSADA I J, et al, 2015. Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 2: experimental analysis[J]. Coastal Engineering, 106: 73-86. doi: 10.1016/j.coastaleng.2015.09.010
 | 
																													
																							| [16] | MORRIS R L, KONLECHNER T M, GHISALBERTI M, et al, 2018. From grey to green: efficacy of eco-engineering solutions for nature-based coastal defence[J]. Global Change Biology, 24(5): 1827-1842. doi: 10.1111/gcb.14063
 | 
																													
																							| [17] | ODÉRIZ I, KNÖCHELMANN N, SILVA R, et al, 2020. Reinforcement of vegetated and unvegetated dunes by a rocky core: a viable alternative for dissipating waves and providing protection?[J]. Coastal Engineering, 158: 103675. doi: 10.1016/j.coastaleng.2020.103675
 | 
																													
																							| [18] | RUPPRECHT F, MÖLLER I, PAUL M, et al, 2017. Vegetation-wave interactions in salt marshes under storm surge conditions[J]. Ecological Engineering, 100: 301-315. doi: 10.1016/j.ecoleng.2016.12.030
 | 
																													
																							| [19] | SALLENGER JR A H, 2000. Storm impact scale for barrier islands[J]. Journal of Coastal Research, 16(3): 890-895. | 
																													
																							| [20] | SILVA R, MARTÍNEZ M L, ODÉRIZ I, et al, 2016. Response of vegetated dune-beach systems to storm conditions[J]. Coastal Engineering, 109: 53-62. doi: 10.1016/j.coastaleng.2015.12.007
 | 
																													
																							| [21] | WANG X Y, XIE W M, ZHANG D, et al, 2016. Wave and vegetation effects on flow and suspended sediment characteristics: a flume study[J]. Estuarine, Coastal and Shelf Science, 182: 1-11. doi: 10.1016/j.ecss.2016.09.009
 | 
																													
																							| [22] | YIN ZEGAO, YANG XIAOYU, MA LIN, et al, 2016. Numerical investigation on wave attenuation through rigid plants[C]// Proceedings of the Second Conference of Global Chinese Scholars on Hydrodynamics. Wuxi: China Ocean Press: 448-453. |