Marine hydrology

Tidal energy fluxes and dissipation in the South China Sea without considering tide-generated potential energy

Expand
  • 1. Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sci-ences, Guangzhou 510301, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China; 3. CNOOC Research Center, Beijing 100027, China
佟景全(1979—), 男, 辽宁省庄河市人, 博士研究生, 目前从事海洋动力过程数值模拟和分析工作。

Received date: 2008-12-25

  Revised date: 2009-04-06

  Online published: 2010-05-24

Supported by

中国科学院知识创新工程项目(Kzcx2-Yw-201); 国家科技计划支撑项目(2006BAB19B01); 国家“973计划”(2006CB403604)

Abstract

The tidal energy fluxes and dissipation of the principal barotropic tidal constituents M2, S2, K1 and O1 over the South China Sea (SCS) are examined in detail using the simulated tidal results of the Estuarine, Coastal and Ocean Model(ECOM). The results show that the M2, S2, K1 and O1 tidal energy fluxes across the Luzon Strait from the west Pacific are 38.93, 5.77, 29.73 and 28.97 GW into the SCS respectively, and the corresponding fluxes across the Karimata Strait into the Java Sea are 2.42, 0.36, 8.67 and 7.86 GW, respectively. There are also M2 tidal energy fluxes of 25.28 GW into the Taiwan Strait from the East China Sea and northwest of the Luzon Strait. The semi-diurnal tidal energy fluxes into the Beibu Gulf of and the Gulf of Thailand (6.52 GW in all) are much weaker than the diurnal tides (24.74GW). There is 12.28GW of diurnal tidal energy flux into the Sulu Sea from the SCS, while 1.92 GW of semi-diurnal tidal energy flux in a contrary direction. The net tidal energy fluxes and bottom boundary layer dissipation, which should be equal to each other in steady state, are not balanced in each area of the SCS. The most convenient management to this is to modulate the bottom friction coefficients, which are calculated to be 0.0023, 0.0024, 0.0023, and 0.0021 for the Taiwan Strait, the Beibu Gulf, the Gulf of Thailand and deep sea areas in the SCS, respectively.

Cite this article

TONG Jing-quan,LEI Fang-hui,MAO Qing-wen,QI Yi-quan . Tidal energy fluxes and dissipation in the South China Sea without considering tide-generated potential energy[J]. Journal of Tropical Oceanography, 2010 , 29(3) : 1 -9 . DOI: 10.11978/j.issn.1009-5470.2010.03.001

References

[1] MUNK W, WUNSCH C. Abyssal recipes II: Energetics of tidal and wind mixing[J]. Deep-Sea Research I, 1998, 45: 1977-2010.
[2] YANAGI T, TAKEOKA H, TSUKAMOTO H. Tidal energy balance in the Seto Inland Sea[J]. Journal of the Ocean-ographical Society of Japan, 1982, 38: 293-299.
[3] DAVIES A M, HALL P, HOWARTH M J, et al. Tidal cur-rents, energy flux and bottom boundary layer thickness in the Clyde Sea and North Channel of the Irish Sea[J]. Ocean Dy-namics, 2004, 54: 108-125.
[4] ZHONG L J, LI M. Tidal energy fluxes and dissipation in the Chesapeake Bay[J]. Continental Shelf Research, 2006, 26: 752-770.
[5] TAYLOR G I. Tidal friction in the Irish Sea[J]. Philosophical Transactions of the Royal Society of London, 1919, A230: 1-93.
[6] JEFFERYS H. Tidal friction in shallow seas[J]. Philosophi-cal Transactions of the Royal Society of London, 1920, A221: 239-264.
[7] EGBERT G D, RAY R D. Estimates of M2 tidal energy dis-sipation from TOPEX/Poseidon altimeter data[J]. J Geophys Res., 2001, 106(C10): 22475-22502.
[8] YE A L, ROBINSON I S. Tidal dynamics in the South China Sea [J]. Geophysical Journal of the Royal Astronomical So-ciety, 1983, 72: 691-707.
[9] 沈育疆, 胡定明, 梅丽明, 等. 南海潮汐数值计算[J]. 海洋湖沼通报, 1985, 1: 1-11.
[10] 方国洪, 曹德明, 黄企洲. 南海潮汐潮流的数值模拟[J]. 海洋学报, 1994, 16(4): 1-12.
[11] FANG G H, KWOK Y K, YU K J, et al. Numerical simula-tion of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand[J]. Continent Shelf Re-search, 1999, 19: 845-869.
[12] ZU T T, GAN J P, EROFEEVA S Y. Numerical study of the tide and tidal dynamics in the South China Sea[J]. Deep-Sea Research I, 2008, 55: 137-154.
[13] BLUMBERG A F. An estuarine and coastal ocean version of POM[C]. Proceedings of Princeton Ocean Model Users Meeting. Princeton, N.J.1996.
[14] 毛庆文, 施平, 齐义泉. 运用调和分析方法分离卫星高度计资料中的潮汐信息[J]. 海洋工程, 2002, 20(1): 41-45.
[15] 毛庆文, 齐义泉, 施平, 等. 在南海南部大纳土纳岛附近存在S2分潮的无潮点吗?[J]. 科学通报, 2006, 增刊II, 51, 23-26.
[16] YANAGI T, TAKAO T, MORIMOTO A. Co-tidal and Co-range charts in the South China Sea derived from Satel-lite altimetry data[J]. La Mer., 1997, 35: 85-93.
[17] 李立, 吴日升, 李燕初, 等. TOPEX/POSEIDON高度计浅海潮汐混淆的初步分析[J]. 海洋学报, 1999, 21(3): 7-14.
[18] 李培良, 左军成, 李磊, 等. 南海TOPEX/POSEIDON高度计资料的正交响应法潮汐分析[J]. 海洋与湖沼, 2002, 33(3): 287-295.
[19] SCHLAX M G, CHELTON D B. Aliased tidal errors in TOPEX/POSEIDON sea surface heights data[J]. J. Geophys. Res., 1994, 99(C12): 24761-24775.
[20] CUMMINS P E, OEY L Y. Simulation of barotropic and baroclinic tides off Northern British Columbia[J]. Journal of Physical Oceanography, 1997, 27(5): 762-781.
Outlines

/