Journal of Tropical Oceanography >
Ecological risk assessment of thallium in Pearl River Estuary and network based on the SOM model
Copy editor: LIN Qiang
Received date: 2020-06-16
Request revised date: 2020-07-15
Online published: 2020-07-21
Supported by
National Key R&D Program of China(2016YFC0402604)
Key Project of Water Science and Technology Planning Project of Guangdong Province of China(2017-21)
Copyright
The study of thallium concentration in the Pearl River Delta is of great significance for water resources protection in the Guangdong-Hong Kong-Macao Greater Bay Area. The table, middle and bottom layers of 11 sections at the estuary and network of the Pearl River were simultaneously sampled and monitored during the four hydrological periods, including spring tide and neap tide of withered water period and high water period. The concentrations of thallium in different layers of the 11 sections were determined, and their temporal and spatial distribution were analyzed. The Self Organizing Maps (SOM) gene expression clustering analysis method was used to fit the 528 thallium monitoring data. In addition, based on the potential ecological risk evaluation method and selected corresponding coefficients, the potential ecological risk of thallium in the Pearl River Estuary and network was assessed by using the SOM model. The results show that the exposure level of thallium in the Pearl River Estuary and network is generally low. The order of thallium concentration are Modaomen > Silong > Makou > Lingdingyang > Humen > Sanshui and neap tide of high water period > spring tide of high water period > spring tide of withered water period > neap tide of withered water period. The SOM analysis results show that the potential ecological risks are overall low in the Pearl River Estuary and network with the order of Modaomen, Makou, Silong, Lingdingyang, Humen, and Sanshui. This study indicates that the SOM method is suitable for cluster analysis of heavy metal pollutants.
Key words: Pearl River Estuary and network; thallium; SOM model; ecological risk
LAN Xuan , LI Feng , ZHANG Chao , DONG Hanying , YANG Qingshu , YU Minghui , WEN Rubing , YANG Yujie . Ecological risk assessment of thallium in Pearl River Estuary and network based on the SOM model[J]. Journal of Tropical Oceanography, 2021 , 40(3) : 132 -142 . DOI: 10.11978/2020064
图1 珠江河口与河网研究区域及研究站位置示意图该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2019)4342的标准地图制作, 底图无修改 Fig. 1 Study area and sections in Pearl River Estuary and network. The map is based on the standard map GS(2019)4342 downloaded from the website of the Standard Map Service of the State Administration of Surveying, Mapping and Geoinformation, and the base map has not been modified |
表1 珠江河口与河网典型区域枯水期各断面铊含量Tab. 1 Thallium contents in typical sections of Pearl River Estuary and network during withered water period |
观测断面 | 分层 | 枯水期铊浓度(µg·L-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
大潮 | 小潮 | |||||||||
最大值 | 最小值 | 平均值 | 标准差 | 最大值 | 最小值 | 平均值 | 标准差 | |||
河 口 区 域 | 伶仃洋 | 上层 | 0.032 | 0.003 | 0.014 | 0.007 | 0.033 | 0.001 | 0.016 | 0.009 |
中层 | 0.031 | 0.006 | 0.016 | 0.008 | 1.270 | 0.002 | 0.080 | 0.273 | ||
下层 | 0.029 | 0.005 | 0.017 | 0.006 | 0.042 | 0.006 | 0.017 | 0.009 | ||
平均值 | 0.031 | 0.005 | 0.016 | 0.448 | 0.003 | 0.113 | ||||
虎门 | 上层 | 0.028 | 0.017 | 0.020 | 0.005 | 0.022 | 0.012 | 0.018 | 0.005 | |
中层 | 0.019 | 0.009 | 0.015 | 0.005 | 0.022 | 0.009 | 0.015 | 0.006 | ||
下层 | 0.026 | 0.007 | 0.015 | 0.009 | 0.028 | 0.009 | 0.016 | 0.009 | ||
平均值 | 0.024 | 0.011 | 0.017 | 0.024 | 0.010 | 0.016 | ||||
磨刀门 | 上层 | 0.030 | 0.017 | 0.022 | 0.006 | 0.027 | 0.017 | 0.023 | 0.004 | |
中层 | 1.302 | 0.016 | 0.338 | 0.643 | 0.026 | 0.011 | 0.016 | 0.004 | ||
下层 | 0.028 | 0.008 | 0.019 | 0.009 | 0.027 | 0.013 | 0.018 | 0.006 | ||
平均值 | 0.453 | 0.137 | 0.126 | 0.027 | 0.014 | 0.019 | ||||
河 网 区 域 | 马口 | 上层 | 1.320 | 0.003 | 0.648 | 0.738 | 0.026 | 0.013 | 0.022 | 0.006 |
中层 | 0.024 | 0.016 | 0.020 | 0.004 | 0.023 | 0.003 | 0.015 | 0.009 | ||
下层 | 0.022 | 0.013 | 0.016 | 0.004 | 0.020 | 0.028 | 0.023 | 0.003 | ||
平均值 | 0.455 | 0.011 | 0.228 | 0.023 | 0.015 | 0.020 | ||||
三水 | 上层 | 0.027 | 0.009 | 0.014 | 0.008 | 1.330 | 0.008 | 0.341 | 0.660 | |
中层 | 0.021 | 0.009 | 0.016 | 0.005 | 0.029 | 0.002 | 0.020 | 0.012 | ||
下层 | 0.026 | 0.006 | 0.015 | 0.009 | 0.016 | 0.006 | 0.012 | 0.004 | ||
平均值 | 0.025 | 0.008 | 0.015 | 0.458 | 0.005 | 0.124 | ||||
石龙 | 上层 | 0.021 | 0.003 | 0.017 | 0.009 | 1.435 | 0 | 0.192 | 0.502 | |
中层 | 1.235 | 0.012 | 0.171 | 0.430 | 1.430 | 0.012 | 0.196 | 0.499 | ||
下层 | 0.024 | 0.012 | 0.017 | 0.005 | 1.369 | 0.008 | 0.186 | 0.478 | ||
平均值 | 0.427 | 0.009 | 0.068 | 1.411 | 0.007 | 0.191 |
表2 珠江河口与河网典型区域丰水期各断面铊含量Tab. 2 Thallium contents in typical sections of Pearl River Estuary and network during high water period |
观测断面 | 分层 | 丰水期铊浓度/(µg·L-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
大潮 | 小潮 | |||||||||
最大值 | 最小值 | 平均值 | 标准差 | 最大值 | 最小值 | 平均值 | 标准差 | |||
河口区域 | 伶仃洋 | 上层 | 0.122 | 0.028 | 0.066 | 0.024 | 0.117 | 0.043 | 0.072 | 0.018 |
中层 | 0.120 | 0.028 | 0.063 | 0.021 | 0.148 | 0.043 | 0.078 | 0.024 | ||
下层 | 0.101 | 0.031 | 0.061 | 0.020 | 0.141 | 0.040 | 0.079 | 0.026 | ||
平均值 | 0.114 | 0.029 | 0.063 | 0.135 | 0.042 | 0.076 | ||||
虎门 | 上层 | 0.096 | 0.048 | 0.069 | 0.020 | 0.078 | 0.068 | 0.074 | 0.004 | |
中层 | 0.082 | 0.065 | 0.070 | 0.008 | 0.084 | 0.064 | 0.075 | 0.007 | ||
下层 | 0.071 | 0.063 | 0.067 | 0.004 | 0.092 | 0.077 | 0.082 | 0.007 | ||
平均值 | 0.083 | 0.059 | 0.069 | 0.085 | 0.070 | 0.077 | ||||
磨刀门 | 上层 | 0.274 | 0.129 | 0.187 | 0.048 | 0.173 | 0.101 | 0.134 | 0.037 | |
中层 | 0.120 | 0.057 | 0.086 | 0.027 | 0.089 | 0.057 | 0.077 | 0.016 | ||
下层 | 0.165 | 0.084 | 0.129 | 0.034 | 0.136 | 0.080 | 0.105 | 0.023 | ||
平均值 | 0.186 | 0.090 | 0.134 | 0.133 | 0.079 | 0.105 | ||||
河网区域 | 马口 | 上层 | 0.101 | 0.068 | 0.086 | 0.015 | 0.104 | 0.071 | 0.092 | 0.014 |
中层 | 0.103 | 0.073 | 0.082 | 0.014 | 0.125 | 0.065 | 0.082 | 0.029 | ||
下层 | 0.087 | 0.063 | 0.077 | 0.011 | 0.091 | 0.081 | 0.085 | 0.002 | ||
平均值 | 0.097 | 0.068 | 0.082 | 0.107 | 0.072 | 0.086 | ||||
三水 | 上层 | 0.139 | 0.022 | 0.093 | 0.050 | 0.051 | 0.017 | 0.030 | 0.015 | |
中层 | 0.140 | 0.073 | 0.109 | 0.030 | 0.051 | 0.020 | 0.030 | 0.015 | ||
下层 | 0.148 | 0.102 | 0.121 | 0.023 | 0.021 | 0.016 | 0.019 | 0.002 | ||
平均值 | 0.142 | 0.066 | 0.108 | 0.041 | 0.018 | 0.026 | ||||
石龙 | 上层 | 0.112 | 0.073 | 0.176 | 0.012 | 0.090 | 0.014 | 0.075 | 0.025 | |
中层 | 0.097 | 0.074 | 0.087 | 0.008 | 0.092 | 0.066 | 0.080 | 0.008 | ||
下层 | 0.095 | 0.073 | 0.086 | 0.008 | 0.100 | 0.074 | 0.086 | 0.008 | ||
平均值 | 0.101 | 0.073 | 0.116 | 0.094 | 0.051 | 0.080 |
表3 国内外其他研究区域水体铊浓度对比表Tab. 3 Comparison of Thallium concentrations in other research areas in China and abroad |
区域(年份) | 铊浓度/(µg·L-1) | |
---|---|---|
国内 | 本文研究区域(2016—2017年) | 未检出~1.43 |
广东西江流域(2013年)(解小凡 等, 2015) | 0.01~0.1 | |
成都某两条河水(1993年)(Luo, 1994) | 0.0216~0.065 | |
长江下游(2006年)(Müller et al, 2005) | 0.05 | |
三峡大坝河水(2006年)(Müller et al, 2005) | 0.019~0.111 | |
长江源头(2012年)(Qu et al, 2015) | 0.00416 | |
GB5749–2006生活饮用水卫生标准(中华人民共和国卫生部 等, 2007) | 0~0.1 | |
DB44/1989—2017工业废水铊污染物排放标准(广东省环境保护厅 等, 2017) | 0~5; 0~2 | |
国外 | 太平洋和大西洋(1985年)(Flegal et al, 1985) | 0.012~0.016 |
莱茵河(1994年)(Cleven et al, 1994) | 0.006~0.715 | |
北美五大湖湖水(1995—1997年)(Lin et al, 1999) | 0.001~0.036 | |
意大利、挪威地下水(1994、1995年)(Dall’aglio et al, 1994; Banks et al, 1995) | 0.001~1.26 | |
北极雪水(1993年)(Cheam et al, 1996) | 0.003~0.009 |
图2 珠江河口河网铊的空间分布该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2019)4342的标准地图制作, 底图无修改 Fig. 2 Spatial distribution of thallium in the estuary and network of the Pearl River. The map is based on the standard map GS(2019)4342 downloaded from the website of the Standard Map Service of the State Administration of Surveying, Mapping and Geoinformation, and the base map has not been modified |
图3 珠江河口河网铊的时间分布图a、b、c、d分别为枯水期大潮、枯水期小潮、丰水期大潮、丰水期小潮; 该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2019)4342的标准地图制作, 底图无修改 Fig. 3 Temporal distribution of thallium concentration in the estuary and network of the Pearl River. a, b, c, and d are spring tide of withered water period, neap tide of withered water period spring tide of high water period and neap tide of high water period, respectively. The map is based on the standard map GS(2019)4342 downloaded from the website of the Standard Map Service of the State Administration of Surveying, Mapping and Geoinformation, and the base map has not been modified |
图4 SOM基因表达聚类结果Fig. 4 Clustering results of SOM gene expression. Left and right are clustering results of concentration and potential ecological risks of thallium, respectively |
表4 铊浓度和潜在生态风险聚类结果表Tab. 4 Clustering results of concentration and potential ecological risks of thallium |
观测断面 | 分层 | 铊的浓度聚类 | 铊的潜在生态风险聚类 | 观测断面 | 分层 | 铊的浓度聚类 | 铊的潜在生态风险聚类 | ||
---|---|---|---|---|---|---|---|---|---|
输出结果 | 输出结果 | 评价等级 | 输出结果 | 输出结果 | 评价等级 | ||||
伶仃洋1 | 上 | 1.5 | 0.5 | 低度 | 磨刀门 | 上 | 6.5 | 10.0 | 极高 |
中 | 1.0 | 0.5 | 低度 | 中 | 8.5 | 8.0 | 极高 | ||
下 | 0.5 | 0.5 | 低度 | 下 | 10.0 | 7.5 | 高 | ||
伶仃洋2 | 上 | 0.5 | 1.5 | 低度 | 马口 | 上 | 9.5 | 8.0 | 极高 |
中 | 1.0 | 0.5 | 低度 | 中 | 8.0 | 8.0 | 极高 | ||
下 | 1.5 | 0.5 | 低度 | 下 | 6.0 | 3.0 | 中度 | ||
伶仃洋3 | 上 | 0.5 | 0.5 | 低度 | 三水 | 上 | 1.5 | 0.5 | 低度 |
中 | 1.0 | 0.5 | 低度 | 中 | 3.0 | 0.5 | 低度 | ||
下 | 1.0 | 0.5 | 低度 | 下 | 2.5 | 2.0 | 低度 | ||
伶仃洋4 | 上 | 0.5 | 0.5 | 低度 | 石龙南 | 上 | 7.5 | 7.5 | 高 |
中 | 0.5 | 0.5 | 低度 | 中 | 7.0 | 7.0 | 高 | ||
下 | 0.5 | 0.5 | 低度 | 下 | 10.0 | 10.0 | 极高 | ||
伶仃洋5 | 上 | 0.5 | 1.5 | 低度 | 石龙北 | 上 | 7.0 | 6.5 | 高 |
中 | 0.5 | 0.5 | 低度 | 中 | 3.0 | 6.5 | 高 | ||
下 | 2.5 | 3.0 | 中度 | 下 | 2.5 | 6.0 | 高 | ||
虎门 | 上 | 2.5 | 0.5 | 低度 | |||||
中 | 2.5 | 0.5 | |||||||
下 | 2.5 | 0.5 |
[1] |
毕建培, 刘晨, 崔凡, 2019. 珠江流域重要饮用水水源地安全状况评估及对策研究[J]. 水利发展研究, 19(8):33-36, 61.
|
[2] |
陈学鹏, 2009. 铊中毒的危害以及预防[J]. 现代职业安全, (2):104-105.
|
[3] |
陈小齐, 余明辉, 刘长杰, 等, 2020. 珠江三角洲近年地形不均匀变化对洪季水动力特征的影响[J]. 水科学进展, 31(1):81-90.
|
[4] |
陈永亨, 张平, 吴颖娟, 等, 2013. 广东北江铊污染的产生原因与污染控制对策[J]. 广州大学学报(自然科学版), 12(4):26-31.
|
[5] |
高博, 孙可, 任明忠, 等, 2008. 北江表层沉积物中铊污染的生态风险[J]. 生态环境, 17(2):528-532.
|
[6] |
广东省环境保护厅, 广东省质量技术监督局, 2017. DB 44/1989—2017 工业废水铊污染物排放标准[S]. 北京: 中国水利水电.
|
[7] |
胡溪, 毛献忠, 2012. 珠江口磨刀门水道咸潮入侵规律研究[J]. 水利学报, 43(5):529-536.
|
[8] |
解小凡, 刘娟, 王津, 等, 2015. 粤西河流表层沉积物重金属铊的环境地球化学特征及生态风险评价[J]. 吉林大学学报(地球科学版), 45(增刊1):1509-06.
|
[9] |
孔兰, 陈晓宏, 闻平, 等, 2011. 2009/2010年枯水期珠江口磨刀门水道强咸潮分析[J]. 自然资源学报, 26(11):1858-1865.
|
[10] |
刘娟, 张平, 陈永亨, 等, 2008. 珠江柱状沉积物中铊化学形态的研究[J]. 广州大学学报(自然科学版), 7(1):67-70.
|
[11] |
刘娟, 王津, 陈永亨, 等, 2015. 粤西某河流沉积物铊污染的铅同位素示踪研究[J]. 地质学报, 89(S1):278-279.
|
[12] |
刘敬勇, 常向阳, 涂湘林, 等, 2010. 广东某硫酸废渣堆渣场周围土壤铊污染的地累积指数评价[J]. 土壤通报, 41(5):1231-1236.
|
[13] |
宋美英, 2014. 珠江河口水体和沉积物中重金属的分布特征及风险评估[D]. 广州: 暨南大学.
|
[14] |
孙加龙, (2018-09-01). 粤港澳大湾区水环境整治的思路及对策研究[EB/OL]. http://blog.sina.com.cn/s/blog_539f650f01030uo9.html. SUN JIALONG. (2018-09-01).
|
[15] |
唐天均, 2018. 粤港澳湾区水环境保护对策和建议[J]. 广东化工, 45(2):153-154.
|
[16] |
万军, 李新, 关杨, 等, 2019. 坚持共保共享绿色发展建设粤港澳美丽大湾区[J]. 环境保护, 47(7):8-11.
|
[17] |
中华人民共和国卫生部, 中国国家标准化管理委员会, 2007. GB 5749-2006 生活饮用水卫生标准[S]. 北京: 中国标准出版社.
|
[18] |
朱金格, 包芸, 胡维平, 等, 2010. 近50年来珠江河网区水动力对地形的响应[J]. 中山大学学报(自然科学版), 49(4):129-133.
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
/
〈 | 〉 |