Journal of Tropical Oceanography >
Analysis on the variation of typhoon precipitation δ 18O during typical El Niño event: A case study of Typhoon Mangkhut (2018)
Received date: 2019-08-31
Request revised date: 2019-10-28
Online published: 2020-07-27
Supported by
Foundation item: National Natural Science Foundation of China(41672170)
Natural Science Foundation of Fujian Province(2017J01654)
Copyright
The rainfall caused by typhoon is different from the other precipitation event due to its unique physical structure. The stable isotope composition of typhoon precipitation is also quite different from that of a general precipitation event. Based on meteorological data before and after the landing of Typhoon Mangkhut (2018) in Guangzhou and Dongguan and stable isotope data of precipitation at hourly resolution, we analyzed the characteristics of the stable isotope variation of the typhoon precipitation and its influencing factors. During the influence of Typhoon Mangkhut, the δ18O value of precipitation in Guangzhou ranged from -5.7‰~-19.2‰, with a variation of 13.5‰; and the average value was -15.5‰. The variation of δ18O value in Dongguan was -7.3‰~-20.0‰, with a variation of 12.7‰; and the average was -14.8‰. The variations of δ18O value of precipitation in the two places both showed the three-stage variation characteristics of inverted U-shape. Due to the influence of evaporation, the precipitation oxygen isotope values in the typhoon at the front and back were relatively positive in two places, of which Guangzhou was (-5.7‰~-9.3‰, and Dongguan was -7.3‰~-8.1‰. The stable isotope values of precipitation in the typhoon central area of the two places were extremely negative, ranging from -16.0‰ to -19.2‰ (Guangzhou) and from -13.0‰ to -20.0‰ (Dongguan), which were the most negative precipitation δ18O values reported in this region so far. According to the analysis, the generated distant typhoon intensity was enhanced during the El Niño. Thus, the stronger convection and water-vapor circulation in Typhoon Mangkhut (2018) led to extreme negative δ 18O value of its precipitation.
YANG Yunyue , XU Tao , LUO Cuiyu , LIU Juan , JIANG Xiuyang . Analysis on the variation of typhoon precipitation δ 18O during typical El Niño event: A case study of Typhoon Mangkhut (2018)[J]. Journal of Tropical Oceanography, 2020 , 39(4) : 34 -41 . DOI: 10.11978/2019081
表1 台风“山竹”与其他台风降水最负δ18O值的比较Tab. 1 Comparison of the most negative precipitation δ18O values of Typhoon Mangkhut (2018) and other typhoons |
年份 | 台风名称 | 最负δ18O值/‰ | 采样地点 |
---|---|---|---|
2018 | 山竹 | -19.2 | 广州 |
2018 | 山竹 | -20.0 | 东莞 |
2004 | 圆规 | -8.2 | 广州 |
2004 | 南川 | -13.1 | 广州 |
2007 | 帕布 | -14.1 | 广州 |
2007—2009 | -- | -17.7~-16.4 | 广州 |
2013—2017 | -- | -11.4~-17.9 | 福州 |
注: “--”表示多个台风。 |
图3 台风“山竹”降水δ2H和δ18O的线性关系GMWL为全球大气降水线方程(Global Meteoric Water Line), 由Craig(1961)提出 Fig. 3 Relationship between δ2H and δ18O in Typhoon Mangkhut (2018) precipitation. GMWL is the Global Meteoric Water Line proposed by Craig (1961) |
图4 台风“山竹”期间广州市的水汽轨迹该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)2950号的标准地图制作。图中红色、蓝色、绿色线条分别表示AGL500m、AGL1000m、AGL1500m的水汽轨迹 Fig. 4 Vapor transport trajectories in Guangzhou during Typhoon Mangkhut (2018). The red, blue, and green lines represent the water vapor trajectories of AGL500m, AGL1000m, and AGL1500m, respectively |
[1] |
蔡健榕, 许涛, 姜修洋, 2019. 双台风“纳沙” “海棠”期间福州降水δ18[J]. 亚热带资源与环境学报, 14(2):34-40.
|
[2] |
陈劲, 杨玺, 汤振鹏, 2018. 登陆广东的台风强度和路径特征分析[J]. 气象研究与应用, 39(3):37-39+56.
|
[3] |
陈志伟, 2019. 西太热带气旋的气候特征及对海洋热状态响应机理的研究[D]. 上海: 上海师范大学: 1-165.
|
[4] |
何敏, 宋文玲, 陈兴芳, 1999. 厄尔尼诺和反厄尔尼诺事件与西北太平洋台风活动[J]. 热带气象学报, (1):18-26 (in Chinese).
|
[5] |
李崇银, 1985. 厄尼诺与西太平洋台风活动[J]. 科学通报, (14):1087-1089 (in Chinese).
|
[6] |
李崇银, 1987. 厄·尼诺影响西太平洋台风活动的研究[J]. 气象学报, 45(2):229-236.
|
[7] |
柳鉴容, 宋献方, 袁国富, 等, 2007. 我国南部夏季季风降水水汽来源的稳定同位素证据[J]. 自然资源学报, 22(6):1004-1012.
|
[8] |
柳鉴容, 宋献方, 袁国富, 等, 2009. 中国东部季风区大气降水δ18O的特征及水汽来源 [J]. 科学通报, 54(22):3521-3531.
|
[9] |
阮均石, 1989. 1982—1983年强厄尔尼诺现象与西北太平洋台风活动的初步分析[J]. 海洋通报, (3):21-28 (in Chinese).
|
[10] |
孙晓双, 王晓艳, 翟水晶, 等, 2016. 台风“麦德姆”福州降水δ18O特征及水汽来源分析 [J]. 自然资源学报, 31(6):1041-1050.
|
[11] |
谭明, 南素兰, 2010. 中国季风区降水氧同位素年际变化的“环流效应”初探[J]. 第四纪研究, 30(3):620-622.
|
[12] |
田立德, 姚檀栋, 孙维贞, 等, 2001. 青藏高原南北降水中δD和δ18O关系及水汽循环 [J]. 中国科学(D辑: 地球科学), 31(3):214-220 (in Chinese).
|
[13] |
王文秀, 林燕丹, 许桂旋, 等, 2018. 1951~2016年厄尔尼诺/拉尼娜事件对登陆华南地区台风的影响[J]. 亚热带水土保持, 30(2):13-19.
|
[14] |
王晓雅, 蒋卫国, 邓越, 等, 2019. “山竹”台风影响地区的小时降雨动态变化及危险性动态评估[J]. 灾害学, 34(3):202-208.
|
[15] |
许涛, 蔡健榕, 孙晓双, 等, 2018. 台风“杜鹃”降水δ18O的云雨区效应初探 [J]. 自然资源学报, 33(12):184-194.
|
[16] |
薛积彬, 钟巍, 赵引娟, 2007. 珠江三角洲地区降水中δ18O的变化特征及与ENSO的关系 [J]. 地理科学, 27(6):825-830.
|
[17] |
尹焕玲, 钟巍, 马巧红, 等, 2012. 极端天气事件下广州市大气降水δ18O的变化特征研究 [J]. 华南师范大学学报(自然科学版), 44(4):121-127.
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
/
〈 |
|
〉 |