Marine biology

Effects of NaHSO3 on the growth and contents of photosynthetic pigments in Dunaliella salina

Expand
  • 1. Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, China Academy of Sciences, Shanghai 200032, China; 2. College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
程建峰(1972—), 男, 江西省横峰县人, 博士后, 副教授, 主要从事植物生理生态研究。E-mail: chjfkarl@163.com

Received date: 2008-01-25

  Revised date: 2008-07-02

  Online published: 2010-05-24

Supported by

中国科学院创新基金(101CK0104)

Abstract

Bisulfite (NaHSO3) is a substance to accelerate plant cyclic photophosphorylation that can be used safely and environmentally friendly. In order to optimize the nutrients formula, decrease the production cost and improve the biomass and pigment accumulation of Dunaliella salina, the authors investigated the effects of different concentrations (0.00?0.40mM•L-1) of NaHSO3 on the biomass and photosynthetic pigment contents. The results showed that NaHSO3 could significantly improve the growth, contents of chlorophyll (Chl) a, Chl b, Chl (a+b), carotenoid (Car) and ratio of Chl to Car. The effects firstly increased and then decreased with the increase of concentration. Accelerating effects under low concentrations (<0.10mM•L-1) were better than those under high concentrations (0.10?0.40mM•L-1), and the maximum accelerating effects were reaches at 0.07mM•L-1. NaHSO3 could increase Chl b content more than Chl a content, which caused the reduction of Chl a content relative to Chl b content; the effects firstly decreased and then increased with the increase of concentration, reducing effects under low concentrations (<0.1mM•L-1) were better than those under high concentrations (0.10?0.40mM•L-1), and the minimum reducing effect was achieved at 0.07mM•L-1. The correlations of biomass (Y) to contents of photosynthetic pigments and between contents of photosynthetic pigments were significant or markedly significant, with the highest correlation of Chl b (XChl.b) to biomass (Y=0.284XChl.b-0.883 (R2=0.994**)) and the next of Chl to biomass (Y=0.100XChl-2.022 (R2=0.993**)), which provided an indirect index to measure the growth of Dunaliella salina in every moment.

Cite this article

CHENG Jian-feng,HU Fen-hong,SHEN Yun-gang . Effects of NaHSO3 on the growth and contents of photosynthetic pigments in Dunaliella salina[J]. Journal of Tropical Oceanography, 2010 , 29(3) : 65 -70 . DOI: 10.11978/j.issn.1009-5470.2010.03.065

References

[1] Ettl H. Taxonomische bemerkungen zuden phytomonadina[J]. Nova Hedwigia, 1983, 35: 731-736.
[2] FISHER M, PICK U, ZAMIR A. A salt-induced 60-kilodalton plasma membrane protein plays a potential role in the extreme halotolerance of the alga Dunaliella[J]. Plant Physiol., 1994, 106: 1359-1365.
[3] AVRON M. Osmoregulation[M]//AVRON M, BEN-AMOTZ A. Dunaliella: Physiology, Biochemistry and Biotechnology. Florida: CRC Press, 1992: 135-164.
[4] CHEN B J, CHI C H. Process development and evaluation for alga glycerol production[J]. Biotechnol Bioengineering, 1981, 23: 1267-1287.
[5] AMOTZ A B, AVRON M. The wavelength dependence of massive carotene synthesis in Dunaliella bardawil (chlorophyceae) [J]. Phycologia, 1989, 25: 175-178.
[6] BASU M, BANERJEE A, BHATTACHARYA U K, et al. Beta-carotene prolongs survival, decreases lipid peroxidation and enhances glutathione status in transplantable murine lymphoma[J]. Phytomedicine, 2000, 7 (2): 151-159.
[7] NELLIS M, FRANCISCO M, CÉSAR L, et al . Effect of nitrate concentration on growth and pigment synthesis of Dunaliella salina cultivated under low illumination and preadapted to different salinities[J]. Journal of Applied Phycology, 1998, 10: 405-411.
[8] 耿德贵, 韩燕, 王义琴, 等. 盐生杜氏藻的耐盐机制研究进展和基因工程研究的展望[J]. 植物学通报, 2002, 19 (3): 290-295.
[9] 冯书营, 刘红涛, 李杰, 薛乐勋. 盐生杜氏藻基因工程研究现状及应用前景[J]. 中国生物工程杂志, 2007, 27 (2) : 108-112.
[10] YANG W G, CAO Y, SUN X H, et al. Isolation of a FAD-GPDH gene encoding a mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase from Dunaliella salina[J]. Journal of Basic Microbiology, 2007, 47, 266-274.
[11] ZHU Y H, JIANG J G, CHEN X W. cDNA for phytoene desaturase in Dunaliella salina and its expressed protein as indicators of phylogenetic position of the β-carotene biosynthetic pathway[J]. J Sci Food Agric., 2007, 87: 1772-1777.
[12] LIU X D, SHEN Y G. NaCl-induced phosphorylation of light harvesting chlorophyll a/b proteins in thylakoid membranes from the halotolerant green alga, Dunaliella salina[J]. FEBS Letters, 2004, 569: 337-340.
[13] LIU X D, SHEN Y G. Salt-induced redox-independent phosphorylation of light harvesting chlorophyll a/b proteins in Dunaliella salina thylakoid membranes[J]. Biochimica et Biophysica Acta, 2005, 1706: 215-219.
[14] 王溪森, 谢小龙, 赵利, 等. 不同生长时期盐藻无机元素分析[J]. 广东微量元素科学, 2004, 11(11): 27-30.
[15] 梁秀芝, 刘成君, 彭峰, 等. 六种盐藻的营养成分[J]. 食品科技, 2007, 32(1): 206-209.
[16] HEJAZI M A, KLEINEGRIS D, WIJFFELS R H. Mechanism ofextraction of β-carotene from microalga Dunaliellea salina in two-phase bioreactors
[J]. Biotechnology and bioengineering, 2004, 88, (5): 593-600.
[17] 孙辉, 徐文华, 雷高鹏, 等. 氮、磷、硫对盐生杜氏藻色素积累的影响[J]. 四川大学学报:自然科学版, 2005, 42(2): 403-497.
[18] 张学成, 孟振, 时艳侠, 等. 光照、温度和营养盐对三株盐生杜氏藻生长和色素积累的影响[J]. 中国海洋大学学报:自然科学版, 2006, 36(5): 754-762.
[19] 王培磊, 张学成, 孟振. 胁迫因子对杜氏藻生长和色素积累的影响研究进展[J]. 海洋科学, 2006, 30(12): 87-91, 95.
[20] CARLA A S, ANA M V, HELENA L F, et al. Optimization of the biological treatment of hypersaline wastewater from carotenogenesis Dunaliellea salina[J]. J Chem Technol Biotechnol. 2001, 76: 1147-1153.
[21] WANG H W, SHEN Y G. How bisulfite enhances photosynthesis[J]. Journal of plant physiology and molecular biology, 2002, 28: 247-252.
[22] 廖飞勇, 叶海燕, 何平. NaHSO3对光合作用的影响及其应用[J]. 吉首大学学报: 自然科学版, 2005, 26(3): 49-52, 64.
[23] 岳虹, 燕平梅. NaHS(~对小麦叶绿素的影响[J]. 太原师范专科学校学报, 2001, (3): 18-19.
[24] 赵昶灵, 武绍波. NaHS(~对砀山酥梨光合色素效应研究[J]. 山西果树, 2002, (1): 3-4.
[25] 许大全. 光合作用效率[M]. 上海: 上海科技出版社, 2002.
[26] PICK U. DARNI L. AVRON M. Determination of ion con-tent and ion fluxes in the halotolerant alga Dunaliella sa-lina[J]. Plant Physiol, 1986, 81: 92-96.
[27] VONSHAK A. Culture methods and biomass produce of algae[M]//COOMBS J, HALL D O, LONG S P et al. Techniques in Bioproductivity and Photosynthesis. 2nd ed. Oxford : Pergamon Press, 1985, Vol 15: 196-211.
[28] ARNON D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant Physiol, 1949, 24: 1-15.
[29] ZELITCH I. Increased rate of net photosynthetic carbon dioxide uptake caused by the inhibition of glycolate oxidese[J]. Plant Physiol., 1966, 41: 1623-1631
[30] 沈允钢, 李德耀, 魏家绵, 等. 改进干重法测定光合作用的应用研究. 植物生理学通讯, 1980, 30(2): 37-41.
[31] PLOSNICAR M, KALEZIC R. Sulfite inhibition of oxygen evolution associate with photosynthetic carbon assimilation[J]. Photosynth. Proc. Int. Conger. (Yugoslavia), 1981, 5: 143-150.
[32] WANG H W, SU J H, SHEN Y G. Difference in response of photosynthesis to bisulfite between two wheat genotypes[J]. Journal of Plant Physiology and Molecular Biology, 2003, 29(1): 27-32.
[33] 沈银武, 刘永定, 利群, 等. 亚硫酸氢钠对鱼腥藻生长的影响[J]. 水生生物学报, 1993, 17(3): 211-215.
[34] WANG H W, MI H L, YE J Y, et al. Low concentrations of NaHSO3 increase cyclic photophosphorylation and photosynthesis in Cyanobacterium Synechocystis PCC6803[J]. Photosynthesis Research, 2003, 75: 151-159.
[35] 苏行, 胡迪琴, 林植芳, 等. 广州市大气污染对两种绿化植物叶绿素荧光特性的影响[J]. 植物生态学报, 2002, 26(5): 599-604.
[36] TAIZ L, ZEIGER E. Plant Physiology[M]. Sinauer Associate Inc, Sunderland, 2006: 128-138.
[37] 郭金华, 牛志电, 梅建设, 等. NaHSO3对桑树光合作用及蚕茧产量和质量的影响[J]. 蚕业科学, 2001, 27(2): 83-86.
[38] 赵昶灵, 武绍波. NaHSO3对砀山酥梨光合色素效应研究[J]. 山西果树, 2002, (1): 3-4.
[39] 廖飞勇, 叶海燕, 吕梁. 不同浓度NaHSO3对油桐光合特性的影响[J]. 西南林学院学报, 2005, 25(3): 5-9.
[40] 闵运江, 马锦绣. NaHSO3对大豆光合产量的影响[J]. 皖西学院学报, 2005, 21(5): 35-38.
[41] 晋宏, 朱凤林. 两种光呼吸抑制剂对草莓若干生理指标及产量品质的影响[J]. 亚热带植物科学, 2006, 35(3): 22-24.
 

Outlines

/