Marine Biology

Preliminary study on immunity function of aquaporin AQP4 in the pearl oyster Pinctada fucata martensii

  • PAN Xiaolan , 1, 2 ,
  • LIU Huiru 1, 2 ,
  • XU Meng 1, 2 ,
  • XU Hanzhi 1, 2 ,
  • ZHANG Hua 1 ,
  • HE Maoxian , 1
Expand
  • 1. CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Applied Marine Biology, Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
HE Maoxian. email:

Copy editor: YIN Bo

Received date: 2020-05-22

  Request revised date: 2020-08-16

  Online published: 2020-08-31

Supported by

Earmarked Fund for Modern Agro-industry Technology Research System(CARS-49)

Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences(ISEE2018PY03)

Shellfish and Large Algae Industry Innovation Team Project of Guangdong Province, China(2019KJ146)

Science and Technology Planning Project of Guangdong Province, China(2017B0303014052)

Copyright

Copyright reserved © 2021.

Abstract

To identify the immunity function of Aquaporin of Pinctada fucata martensii (PfAQP4), the mRNA expression patterns of PfAQP4 and immune-related genes were detected by qPCR after immunostimulation and RNA interference. The results showed that the mRNA expression of PfAQP4 in the mantle was significantly up-regulated at 24 h (p < 0.05), while that in the digestive gland was significantly down-regulated at 12 h, and increased at 24 h, 36 h and 48 h after LPS injection (p < 0.05). After poly (I : C) injection, the expression of PfAQP4 was significantly up-regulated in the mantle at 36 h and 48 h (p < 0.05), and up-regulated at 48 h in the digestive gland (p < 0.05). When PfAQP4 was knocked down by RNA interference, the mRNA expression of CuZn-SOD in the mantle was significantly down-regulated (p < 0.05); a significant positive correlation of expression level between CuZn-SOD and PfAQP4 was found (r = 0.818, p < 0.001). We showed that PfAQP4 plays an important role in the immune response of P. f. martensii, which provide new data for the innate immunity of P. f. martensii.

Cite this article

PAN Xiaolan , LIU Huiru , XU Meng , XU Hanzhi , ZHANG Hua , HE Maoxian . Preliminary study on immunity function of aquaporin AQP4 in the pearl oyster Pinctada fucata martensii[J]. Journal of Tropical Oceanography, 2021 , 40(2) : 83 -89 . DOI: 10.11978/2020050

水通道蛋白4 (Aquaporin 4, AQP4)是一类参与水运输的膜转运蛋白, 通常以四聚体形式存在, 在渗透压调节中起重要作用(Ho et al, 2009; Pannicke et al, 2010)。AQP4与多种人类疾病的发生发展有关, 如脑水肿(Papadopoulos et al, 2007)。血脑屏障(Blood-brain Barrier, BBB)破坏后AQP4大量表达可致脑水肿形成和发展, 该过程伴随着氧化应激水平的增加(Yang et al, 2014)。研究发现基质金属蛋白分解酶(Matrix Metalloproteinase, MMP)可通过降解细胞外基质来增加毛细血管通透性从而促进BBB的破坏(武柠子 等, 2016), MMP与AQP4的表达关系密切, 某些药物可以通过抑制MMP的表达从而抑制AQP4的表达来减轻BBB的破坏, 在小鼠中MMP敲除可直接引起AQP4表达量下调, AQP4敲除会导致MMP表达异常(Zhou et al, 2010; Cao et al, 2016; Pérez-Hernández et al, 2017)。提高超氧化物歧化酶(Superoxide Dismutase, SOD)活力和下调AQP4的表达可减轻脑水肿症状(Belayev et al, 2012; 王晶 等, 2018)。此外, 在人自身免疫性视神经脊髓炎(NMO)患者的血清中AQP4抗体(AQP4-IgG)显著升高, AQP4肽的刺激可使NMO患者的T细胞分泌白细胞介素17 (Interleukin, IL-17)等细胞因子(Nelson et al, 2010; Ulusoy et al, 2012; Wang et al, 2012)。AQP4基因缺失可抑制或激活重要免疫转录调控因子核因子κB (Nuclear factor kappa B, NF-κB)信号通路, 从而抑制或促进细胞因子的释放(Sun et al, 2016; Dai et al, 2018; Wang et al, 2019; Hua et al, 2020); 若抑制NF-κB信号通路, 则会导致AQP4基因的表达受到抑制(Sun et al, 2019)。这些研究表明AQP4影响多种免疫相关因子的合成和分泌。目前已证实AQP4参与水产动物渗透压调节(高沿, 2016), 但关于其免疫功能还没有报道。
马氏珠母贝(Pinctada fucata martensii)是人工培育海水珍珠的主要母贝, 除了在自然状态下可能会受到病原菌的入侵之外, 用其进行人工育珠的过程中, 经常会观察到插核手术贝因病原菌入侵伤口而死亡的现象, 机体免疫显著影响插核手术贝的成活率(Adzigbli et al, 2019, 2020)。我们前期克隆了马氏珠母贝AQP4 (PfAQP4)并研究了其在渗透压调节中的功能(潘肖兰 等, 2020), 本文拟探究PfAQP4是否具有免疫调节功能, 以期为马氏珠母贝的抗性育种及病害防治等提供参考。

1 材料与方法

1.1 试验材料

试验用约1龄的马氏珠母贝, 养殖于深圳大鹏澳海区。将试验贝暂养于室内水池中, 水温和盐度等条件与海区一样, 24h充气, 每天8:00投喂饵料(亚心形扁藻) 1次, 14:00换水1次。

1.2 免疫刺激试验

根据注射物不同分为脂多糖(Lipopolysaccharide, LPS)组、聚肌胞[Polyinosinic-polycytidylic acid, Poly (I:C)]组和磷酸缓冲盐溶液(phosphate buffer saline, PBS)组(阴性对照) 3个组, 每组60只贝。将3种注射物按试剂说明书分别配置成质量浓度为1μg·μL-1溶液后进行注射, 每只贝注射剂量为100μL。分别于注射后12h、24h、36h、48h和72h, 从每个组别中随机取9只贝, 取消化腺和外套膜组织立即置于液氮中保存。每3只贝的同一组织混合作为1个生物学重复, 共3个生物学重复。

1.3 RNA干扰试验

用美国Promega公司的T7 RiboMAX™ Express Large Scale RNA Production System试剂盒进行PfAQP4 dsRNA的合成, 合成引物见表1。将15只马氏珠母贝随机分成3组, 分别是AQP组、绿色荧光蛋白(GFP)组和PBS-r组。其中AQP组为试验组, 注射浓度为4μg·μL-1PfAQP4 dsRNA溶液40μL; GFP是水母特有的一类发光蛋白, 在其他生物体内不存在, 因此不会出现假阳性结果, 故将GFP组作为阳性对照组, 注射质量浓度为4μg·μL-1GFP dsRNA溶液40μL; PBS-r组作为阴性对照组, 注射40μL 1×PBS。7d后分别对每只贝的外套膜组织进行固定, 用于RNA提取。
表1 本研究所用的引物序列

Tab. 1 Primers used in this study

引物名称 引物序列(5' — 3') 用途
dsAQP4-T7F GGATCCTAATACGACTCACTATAGGTTGCCTTTGGGCTATCGG PfAQP4 RNAi含T7启动子序列正向引物
dsAQP4-T7R GGATCCTAATACGACTCACTATAGGCGGAAGGAGCAGCAAAGAC PfAQP4 RNAi含T7启动子序列反向引物
dsGFP4-T7F GGATCCTAATACGACTCACTATAGGCGACGTAAACGGCCACAAGTT GFP RNAi含T7启动子序列正向引物
dsGFP-T7R GGATCCTAATACGACTCACTATAGGATGGGGGTGTTCTGCTGGTAG GFP RNAi含T7启动子序列反向引物
dsAQP4-F TTGCCTTTGGGCTATCGG PfAQP4 RNAi正向引物
dsAQP4-R CGGAAGGAGCAGCAAAGAC PfAQP4 RNAi反向引物
dsGFP-F CGACGTAAACGGCCACAAGTT GFP RNAi正向引物
dsGFP-R ATGGGGGTGTTCTGCTGGTAG GFP RNAi反向引物
Faqp CTGTGATGGCGTCAACTGATG PfAQP4 qPCR正向引物
Raqp CGCAATCGTGAGAAGATGACC PfAQP4 qPCR反向引物
F18S CGTTTCAACAAGACGCCAGTAG 18S qPCR正向引物
R18S ACGAAAAAAAGGTTTGAGAGACG 18S qPCR反向引物
QT5Rel143 GATGGCAGAGGATGATTCTTCTT NF-κB qPCR正向引物
QT3Rel332 TGATGGACCTTCACACTCATACC NF-κB qPCR反向引物
MMPF TCTGGCTCATGCGTTTTTCC MMP qPCR正向引物
MMPR AGGGCATGTCCAATCTCATGAG MMP qPCR反向引物
QT5IL17seq460 CCAGTCCTCGTAATAAATGTGAACC IL-17 qPCR正向引物
QT3IL17seq636 CGCTTCCGCTGCTAGATTCTT IL-17 qPCR反向引物
LAMPF TGCCTGTCACAATAATAACC LAMP qPCR正向引物
LAMPR AGACTCAAAGTAAGACCACCT LAMP qPCR反向引物
CuZn-SODF GAAACTGCAAACCCTATA CuZn-SOD qPCR正向引物
CuZn-SODR AGACATTCGTCAAACTCA CuZn-SOD qPCR反向引物

注: 下划线表示T7启动子序列, 粗体表示额外的碱基, 可允许聚合酶更有效的结合和启动

1.4 总RNA提取、cDNA模板合成和实时荧光定量PCR

用Magen公司通用RNA提取试剂盒提取组织的总RNA, 用UV-Vis Spectrophotometer Q5000 (QUAWELL)测定RNA浓度, 1.5%琼脂糖凝胶电泳检验RNA质量。用带有去除基因组功能的逆转录试剂盒ReverTra Ace® qPCR RT Master Mix With gDNA Remover (Toyobo)进行cDNA第一链合成, 用SYBR® Green Realtime PCR Master Mix (Toyobo)和Light Cycler 480 (Roche, Switzerland), 18S rRNA为内参基因进行实时荧光定量分析, 每个样品3个技术重复, 所检测基因的实时荧光定量引物见表1。反应体系为: SYBR® Green Realtime PCR Master Mix 5µL, 双蒸馏水3.4µL, cDNA模板1µL, 上下游引物各0.3µL, 共10µL。反应程序为: 95℃预变性10min; 95℃ 10s, 56℃ 15s, 72℃ 15s, 45个循环。2-△Ct法计算相对mRNA表达量。用SPSS19.0软件的单因素方差分析法(ANOVA)进行显著性分析, Tukey法进行进行多组样本间差异显著性分析, 置信区间为95%。数据以均值±标准差(SD)表示, 在p<0.05时具有统计学意义。用SPSSAU-在线SPSS分析软件(https://spssau.com/front/spssau/index.html)进行Pearson相关性分析。

2 结果

2.1 免疫刺激后PfAQP4在外套膜和消化腺组织的表达情况

免疫刺激后PfAQP4在外套膜中的相对表达情况如图1a。在注射LPS后12h, PfAQP4 mRNA相对表达量与对照组(PBS组)间无显著性差异; 注射LPS后24h, PfAQP4 mRNA相对表达量为0.0103, 与PBS组相比显著升高(p<0.05), 是PBS组的2.2倍; 注射后36h, PfAQP4转录表达量降至PBS组水平。注射Poly(I:C)后12h和24h, PfAQP4 mRNA相对表达量与相应时刻PBS组相比均无显著性差异; 注射后36h和48h, PfAQP4 mRNA相对表达量分别为0.0063和0.0093, 与相应时刻PBS组相比均显著升高(p<0.05), 分别是PBS组的2.2和1.5倍; 注射后72h, PfAQP4 转录表达量已降至PBS组水平。
图1 3种免疫刺激引起PfAQP4 mRNA相对表达量在外套膜(a)和消化腺(b)中的随时间变化情况

*表示同一时刻试验组与对照组有显著差异(p<0.05)

Fig. 1 Relative mRNA expression of PfAQP4 in the mantle (a) and digestive gland (b) after immune stimulation

* indicates that the experimental group and control group are significantly different at the same time (p < 0.05)

免疫刺激后PfAQP4在消化腺中的相对表达情况如图1b。注射LPS后12h, PfAQP4 mRNA的相对表达量为0.0009, 与PBS组相比显著降低(p<0.05), 为PBS组的0.5倍; 注射后24h、36h和48h, PfAQP4的转录表达量与相应时刻PBS组相比均显著升高(p<0.05), 基因转录表达量分别为0.0041、0.0021和0.0028, 分别是PBS组的2.9、2.3和2.2倍; 注射后72h, PfAQP4转录表达量与PBS组相比已无显著性差异。注射Poly(I:C)后12h、24h和36h, PfAQP4 mRNA相对表达量与相应时刻PBS组相比均无显著性差异; 注射后48h, PfAQP4 mRNA的相对表达量为0.0027, 与PBS组相比显著上升(p<0.05), 是PBS组的2.1倍; 注射后72h时PfAQP4转录表达量恢复至PBS组水平。

2.2 RNA干扰后免疫相关基因在外套膜的表达情况

PfAQP4 RNA干扰效果及干扰后免疫相关基因的表达情况如图2。AQP组、PBS-r组和GFP组中PfAQP4 mRNA相对表达量分别为0.003、0.011和0.015, PfAQP4转录表达量在试验组与两个对照组间均具有显著性(p<0.05、p<0.01), 基因干扰效率为77%。溶酶体膜相关糖蛋白LAMP基因在AQP组、PBS-r组和GFP组的mRNA相对表达量分别为0.01、0.04和0.18, 其中AQP组LAMP转录表达量与GFP组相比显著下降(p<0.05), 与PBS-r组相比无显著性差异; 核因子κBNF-κB基因在AQP组、PBS-r组和GFP组的mRNA相对表达量分别为0.01、0.02和0.04, AQP组NF-κB转录表达量与GFP组相比显著下降(p<0.01), 与PBS-r组相比无显著性差异; 铜锌超氧化物歧化酶CuZn-SOD基因在AQP组、PBS-r组和GFP组的mRNA相对表达量分别为0.02、0.07和0.10, 与两个对照组相比, CuZn-SOD表达显著下降(p<0.05、p<0.001); 基质金属蛋白分解酶MMP和白细胞介素IL-17基因的mRNA相对表达量各组间均无显著性差异。
图2 PfAQP4表达抑制后5个免疫相关基因在外套膜中的随时间变化情况

a. PfAQP4 mRNA; b. LAMP mRNA; c. CuZn-SOD mRNA; d. MMP mRNA; e. NF-κB mRNA; f. IL-17 mRNA。*表示对照组与AQP组差异显著(p<0.05), **表示p<0.01, ***表示p<0.001

Fig. 2 Relative mRNA expression of 5 immune-related genes in the mantle after inhibition of PfAQP4 expression

* Indicates significant difference between the control group and AQP group (p < 0.05), ** indicates p < 0.01, and *** indicates p < 0.001

将AQP组、PBS-r组和GFP组的PfAQP4基因转录表达量与LAMPNF-κBCuZn-SODMMPIL-17基因的转录表达量进行Pearson相关性分析(表2)。结果发现: 在5个免疫相关基因中, CuZn-SODLAMPNF-κB基因与PfAQP4基因的相关系数分别为0.818 (p<0.001)、0.674 (p<0.01)和0.655 (p<0.05), 这3个基因与PfAQP4基因表现出显著正相关性; IL-17基因与PfAQP4基因的相关系数为0.515, 无显著相关性; MMP基因与PfAQP4基因的相关系数仅为0.356, 两者也无显著相关性。
表2 RNA干扰后PfAQP4与免疫相关基因mRNA表达量的相关性分析

Tab. 2 Correlation analysis of mRNA expression between PfAQP4 and immune-related genes in the mantle after RNA interference

基因名称 相关系数 p
基质金属蛋白分解酶 0.356 0.212
核因子κB 0.655* 0.011
白细胞介素17 0.515 0.060
溶酶体膜相关糖蛋白 0.674** 0.008
铜锌超氧化物歧化酶 0.818*** 0.000

注: *表示p<0.05, **表示p<0.01, ***表示p<0.001

3 讨论

自1994年AQP4在人脑中被发现以来, 其在高等脊椎动物中的免疫调节功能已被广泛认知, 该基因的表达变化涉及免疫相关通路的激活和抑制, 与多种免疫相关因子的表达变化有关。本研究分析了免疫刺激后PfAQP4 mRNA相对表达量的改变以及PfAQP4 RNA干扰后免疫相关基因的表达变化, 研究结果表明PfAQP4参与马氏珠母贝免疫应答。LPS是革兰氏阴性细菌细胞壁外壁的组成成分, 通常被用来模拟细菌感染, Poly(I:C)是一种人工合成的双链RNA类似物, 通常被用来模拟病毒感染(孙乐 等, 2016; Liu et al, 2018)。在马氏珠母贝中, 消化腺和外套膜都是重要的免疫器官(Zhang et al, 2018)。本试验结果显示注射LPS和Poly(I:C)后, PfAQP4基因的表达在外套膜和消化腺中均出现显著变化, 说明该基因参与马氏珠母贝因LPS和Poly(I:C)刺激引起的免疫应答。在消化腺中, LPS注射后24h开始出现PfAQP4 mRNA表达量的显著上调, 而Poly(I:C)注射后出现PfAQP4 mRNA表达量显著上调的时间为48h, 说明在消化腺中PfAQP4 响应LPS刺激比响应Poly(I:C)刺激早。同样, 在外套膜中, LPS注射后24h开始出现PfAQP4 mRNA表达量的显著上调, 而Poly(I:C)注射后PfAQP4 mRNA表达量的显著上调在36h才观察到, 也说明了PfAQP4对LPS诱导的免疫反应更为敏感。在本试验中, PfAQP4在消化腺中的表达在LPS刺激后12h显著下降, 该现象在外套膜中没有观察到, 这可能是由于不同组织的功能特异性, 对免疫刺激信号做出的响应存在差异。消化腺是海洋软体动物的主要免疫组织已得到了广泛的认知。最近研究报道, 外套膜也作为重要的免疫器官参与马氏珠母贝的免疫防御(Zhang et al, 2018)。马氏珠母贝作为海水珍珠培育的主要母贝, 在进行插核手术后外套膜小片增生形成珍珠囊, 此过程历经免疫识别、珍珠囊细胞分泌珍珠质包裹珠核形成珍珠。因此, 对于马氏珠母贝来说, 外套膜免疫显得尤为重要(Zhao et al, 2012)。本试验分析了PfAQP4 RNA干扰后外套膜免疫相关基因的表达变化, 以此来说明PfAQP4与免疫相关基因之间的关系。PfAQP4 RNA抑制后外套膜免疫相关基因(LAMPCuZn-SODNF-κBMMPIL-17)中除CuZn-SOD基因在PfAQP4注射组出现显著下降外, 其他4个基因(MMPNF-κBIL-17LAMP)与对照组相比无显著变化, 说明在马氏珠母贝中, PfAQP4对这4个免疫相关基因的调节作用较小。Pearson相关性分析发现PfAQP4CuZn-SOD相关系数为0.818 (p<0.001), 抑制PfAQP4的表达可显著抑制CuZn-SOD的表达, 说明PfAQP4CuZn-SOD位于同一条信号通路中。鉴于CuZn-SOD最主要的功能是参与机体氧化应激, 是重要的免疫相关基因(袁牧 等, 2016), 说明PfAQP4可能与CuZn-SOD共同在免疫调节网络中发挥重要作用。在水产动物中, CuZn-SOD在文蛤(Meretrix meretrix)(朱丹 等, 2010)、菲律宾蛤仔(Venerupis philippinarum)(Li et al, 2010)、锯缘青蟹(Scylla serrata)(Lin et al, 2008)、皱纹盘鲍(Haliotis discus discus)(Kim et al, 2007)、栉孔扇贝(Chlamys farreri)(Ni et al, 2007)、海湾扇贝(Argopecten irradians)(Bao et al, 2009)等中均被发现与所研究物种的免疫应答有关, 该基因可在短时间内诱导免疫系统, 是一种急性期蛋白。本研究结果表明, 在马氏珠母贝中PfAQP4可调节CuZn-SOD参与免疫应答。
本研究首次发现PfAQP4基因响应LPS和Poly(I:C)的免疫刺激。干扰PfAQP4基因表达可导致CuZn-SOD基因表达量出现显著下降, 两者具有较高的正相关性, 说明PfAQP4可调节CuZn-SOD基因的表达。鉴于CuZn-SOD是一个公认的免疫调节因子, 故推测PfAQP4可能通过调节CuZn-SOD从而参与马氏珠母贝的免疫应答。但PfAQP4如何调节CuZn-SOD还需更深入的试验研究。
[1]
高沿, 2016. 凡纳滨对虾水孔蛋白-4基因克隆、表达及其对盐度胁迫的反应研究[D]. 北京: 中国科学院大学(in Chinese).

[2]
潘肖兰, 刘惠茹, 许濛, 等, 2020. 马氏珠母贝水通道蛋白基因AQP4 cDNA克隆和表达分析[J]. 热带海洋学报, 39(3):66-75.

PAN XIAOLAN, LIU HUIRU, XU MENG, et al, 2020. Cloning and expression analysis of aquaporin gene AQP4 cDNA from Pinctada fucata martensii[J]. Journal of Tropical Oceanography, 39(3):66-75 (in Chinese with English abstract).

[3]
孙乐, 倪云翔, 丁之德, 2016. 宫内环境变化对子代大脑海马发育影响的分子机制[J]. 国际妇产科学杂志, 43(5):547-551, 560.

SUN LE, NI YUNXIANG, DING ZHIDE, 2016. The epigenetic influence of intrauterine environment changes on offspring′s hippocampal developmen[J]. Journal of International Obstetrics and Gynecology, 43(5):547-551, 560 (in Chinese with English abstract).

[4]
王晶, 李红玲, 赵龙, 等, 2018. 不同疗程高压氧治疗对脑出血大鼠血肿周围AQP4和SOD表达的影响[J]. 中国康复医学杂志, 33(1):29-35.

WNAG JING, LI HONGLING, ZHAO LONG, et al, 2018. Effects of different hyperbaric oxygen treatment courses on perihematomal edema and expression of aquaporin-4 and superoxide dismutase in rats with intracerebral hemorrhage[J]. Chinese Journal of Rehabilitation Medicine, 33(1):29-35 (in Chinese with English abstract).

[5]
武柠子, 马慧萍, 王宁, 等, 2016. 脑水肿分子机制的研究进展[J]. 解放军医药杂志, 28(6):14-18.

WU NINGZI, MA HUIPING, WANG NING, et al, 2016. Progression on molecular mechanisms of cerebral edema[J]. Medical & Pharmaceutical Journal of Chinese People’s Liberation Army, 28(6):14-18 (in Chinese with English abstract).

[6]
袁牧, 王昌留, 王一斐, 等, 2016. 超氧化物歧化酶的研究进展[J]. 中国组织化学与细胞化学杂志, 25(6):550-558.

YUAN MU, WANG CHANGLIU, WANG YIFEI, et al, 2016. Progress in the research of superoxide dismutase[J]. Chinese Journal of Histochemistry and Cytochemistry, 25(6):550-558 (in Chinese with English abstract).

[7]
朱丹, 李宏俊, 高祥刚, 等, 2010. 文蛤胞内铜锌超氧化物歧化酶基因的克隆与序列分析[J]. 生物技术通报,(11): 123-128, 133.

ZHU DAN, LI HONGJUN, GAO XIANGGANG, et al, 2010. Molecular cloning and sequence analysis of an intracellular Cu/Zn-superoxide dismutase gene from Hard Clam (Meretrix meretrix)[J]. Biotechnology Bulletin, (11): 123-128, 133 (in Chinese with English abstract).

[8]
ADZIGBLI L, YU WANMEI, LI JUNHUI, et al, 2019. Influence of age on pearl production performance, enzymatic activity, and immune-related gene expression of the pearl oyster Pinctada fucata martensii[J]. North American Journal of Aquaculture, 81(4):430-437.

[9]
ADZIGBLI L, WANG ZIMAN, LI JUNHUI, et al, 2020. Survival, retention rate and immunity of the black shell colored stocks of pearl oyster Pinctada fucata martensii after grafting operation[J]. Fish & Shellfish Immunology, 98: 691-698.

PMID

[10]
BAO YONGBO, LI LI, XU FEI, et al, 2009. Intracellular copper/zinc superoxide dismutase from bay scallop Argopecten irradians: its gene structure, mRNA expression and recombinant protein[J]. Fish & Shellfish Immunology, 27(2):210-220.

PMID

[11]
BELAYEV L, LU YOUMING, BAZAN N G. 2012. Chapter 35-brain ischemia and reperfusion: cellular and molecular mechanisms in stroke injury[M]//BRADY S T, SIEGEL G J, ALBERS R W, et al, Basic neurochemistry: principles of molecular, cellular, and medical neurobiology. New York: Academic Press: 621-642.

[12]
CAO SHENGLONG, ZHU PING, YU XIAOBO, et al, 2016. Hydrogen sulfide attenuates brain edema in early brain injury after subarachnoid hemorrhage in rats: Possible involvement of MMP-9 induced blood-brain barrier disruption and AQP4 expression[J]. Neuroscience Letters, 621: 88-97.

DOI PMID

[13]
DAI WANGSHU, YAN JUNJUN, CHEN GUANGZONG, et al, 2018. AQP4-knockout alleviates the lipopolysaccharide- induced inflammatory response in astrocytes via SPHK1/ MAPK/AKT signaling[J]. International Journal of Molecular Medicine, 42(3):1716-1722.

DOI PMID

[14]
HO J D, YEH R, SANDSTROM A, et al, 2009. Crystal structure of human aquaporin 4 at 1.8 Å and its mechanism of conductance[J]. Proceedings of the National Academy of Sciences of the United States of America, 106(18):7437-7442.

PMID

[15]
HUA WEI, CHEN XUEMEI, WANG JUNMIN, et al, 2020. Mechanisms and potential therapeutic targets for spontaneous intracerebral hemorrhage[J]. Brain Hemorrhages, 1(2):99-104.

[16]
KIM K Y, LEE S Y, CHO Y S, et al, 2007. Molecular characterization and mRNA expression during metal exposure and thermal stress of copper/zinc-and manganese-superoxide dismutases in disk abalone, Haliotis discus discus[J]. Fish & Shellfish Immunology, 23(5):1043-1059.

PMID

[17]
LI CHENGHUA, SUN HUILI, CHEN AIQIN, et al, 2010. Identification and characterization of an intracellular Cu, Zn-superoxide dismutase (icCu/Zn-SOD) gene from clam Venerupis philippinarum[J]. Fish & Shellfish Immunology, 28(3):499-503.

PMID

[18]
LIN Y C, VASEEHARAN B, CHEN J C, 2008. Identification of the extracellular copper-zinc superoxide dismutase (ecCuZnSOD) gene of the mud crab Scylla serrata and its expression following β-glucan and peptidoglycan injections[J]. Molecular Immunology, 45(5):1346-1355.

DOI PMID

[19]
LIU YANJUN, TANG XIANGQI, 2018. Depressive syndromes in autoimmune disorders of the nervous system: prevalence, etiology, and influence[J]. Frontiers in Psychiatry, 9: 451.

DOI PMID

[20]
NELSON P A, KHODADOUST M, PRODHOMME T, et al, 2010. Immunodominant T cell determinants of aquaporin-4, the autoantigen associated with neuromyelitis optica[J]. PLoS One, 5(11):e15050.

DOI PMID

[21]
NI DUOJIAO, SONG LINSHENG, GAO QIANG, et al, 2007. The cDNA cloning and mRNA expression of cytoplasmic Cu, Zn superoxide dismutase (SOD) gene in scallop Chlamys farreri[J]. Fish & Shellfish Immunology, 23(5):1032-1042.

DOI PMID

[22]
PANNICKE T, WURM A, IANDIEV I, et al, 2010. Deletion of aquaporin-4 renders retinal glial cells more susceptible to osmotic stress[J]. Journal of Neuroscience Research, 88(13):2877-2888.

PMID

[23]
PAPADOPOULOS M C, VERKMAN A S, 2007. Aquaporin-4 and brain edema[J]. Pediatric Nephrology, 22(6):778-784.

PMID

[24]
PÉREZ-HERNÁNDEZ M, FERNÁNDEZ-VALLE M E, RUBIO-ARAIZ A, et al, 2017. 3,4-Methylenedioxymeth- amphetamine (MDMA, ecstasy) produces edema due to BBB disruption induced by MMP-9 activation in rat hippocampus[J]. Neuropharmacology, 118: 157-166.

DOI PMID

[25]
SUN H, LIANG R, YANG B, et al, 2016. Aquaporin-4 mediates communication between astrocyte and microglia: implications of neuroinflammation in experimental Parkinson’s disease[J]. Neuroscience, 317: 65-75.

PMID

[26]
SUN LIN, LI MAN, MA XUN, et al, 2019. Inhibiting high mobility group box-1 reduces early spinal cord edema and attenuates astrocyte activation and aquaporin-4 expression after spinal cord injury in rats[J]. Journal of Neurotrauma, 36(3):421-435.

DOI PMID

[27]
ULUSOY C, TÜZÜN E, KÜRTÜNCÜ M, et al, 2012. Comparison of the cytokine profiles of patients with neuronal- antibody-associated central nervous system disorders[J]. International Journal of Neuroscience, 122(6):284-289.

[28]
WANG HONGHAO, ZHONG XIAONAN, WANG KAI, et al, 2012. Interleukin 17 gene polymorphism is associated with anti-aquaporin 4 antibody-positive neuromyelitis optica in the Southern Han Chinese-A case control study[J]. Journal of the Neurological Sciences, 314(1-2):26-28.

PMID

[29]
WANG LIUHUA, TANG HUA, WANG CHAO, et al, 2019. Aquaporin 4 deficiency alleviates experimental colitis in mice[J]. The FASEB Journal, 33(8):8935-8944.

PMID

[30]
YANG JINGYU, XUE XUE, TIAN HUA, et al, 2014. Role of microglia in ethanol-induced neurodegenerative disease: pathological and behavioral dysfunction at different developmental stages[J]. Pharmacology & Therapeutics, 144(3):321-337.

DOI PMID

[31]
ZHANG HUA, OU ZEKUI, XU MENG, et al, 2018. Molecular cloning and characterization of a putative mitogen-activated protein kinase (Erk1/2) gene: Involvement in mantle immunity of Pinctada fucata[J]. Fish & Shellfish Immunology, 80: 63-70.

DOI PMID

[32]
ZHAO XIAOXIA, WANG QINGHENG, JIAO YU, et al, 2012. Identification of genes potentially related to biomineralization and immunity by transcriptome analysis of pearl sac in Pearl Oyster Pinctada martensii[J]. Marine Biotechnology, 14(6):730-739.

DOI PMID

[33]
ZHOU YU, LU ZUNENG, GUO YUANJIN, et al, 2010. Favorable effects of MMP-9 knockdown in murine herpes simplex encephalitis using small interfering RNA[J]. Neurological Research, 32(8):801-809.

PMID

Outlines

/