Journal of Tropical Oceanography >
Review on the research of seagrass optical remote sensing monitoring
Copy editor: LIN Qiang
Received date: 2020-09-20
Revised date: 2020-11-22
Online published: 2020-12-21
Supported by
Strategic Priority Research Program of the Chinese Academy of Sciences(XDA13020506)
Natural Science Foundation of Jiangsu Province(BK20170379)
Scientific Research Fund project of Suzhou University of Science and Technology(XKZ2019009)
Copyright
Seagrass growing in the waters of tropical, subtropical and temperate oceans is an important structural and functional component of the global marine ecosystem and has a high ecological service value. Seagrass is rapidly declining worldwide because of the strong impact of human activities and natural disasters. Therefore, it is a great significance to monitor and protect seagrass resources. With the development of sensor technology, optical remote sensing has shown obvious advantages in seagrass monitoring. In this paper, we review the research status of advanced seagrass remote sensing monitoring at home and abroad, mainly summarizing the research content, technology and methods, and demonstrating the feasibility of seagrass optical remote sensing monitoring. Our aim is to illustrate the suitable data and reliable technical methods for seagrass optical remote sensing monitoring in China, and to suggest potential research directions. This review provides reference for seagrass remote sensing monitoring and expands the thought of scientific management of seagrass resources in China.
LI Yiqiong , BAI Junwu , ZHANG Li , LI Tong . Review on the research of seagrass optical remote sensing monitoring[J]. Journal of Tropical Oceanography, 2021 , 40(6) : 1 -13 . DOI: 10.11978/2020110
表1 不同传感器数据开展海草监测任务的适宜性Tab. 1 Suitability of different sensor data for seagrass monitoring tasks |
传感器名称 | 监测任务 | 数据适宜性 | ||||||
---|---|---|---|---|---|---|---|---|
海草底栖生境 | 海草覆盖度变化 | 海草生 物量 | 海草群落结构 | 空间 范围 | 制图 精度 | 获取 成本 | ||
较粗划分 | 细致划分 | |||||||
高分辨率IKONOS、Quickbird、Wordview-2等 | 可行 | 可行 | 可行 | 较小 | 较高 | 高昂 | ||
中低分辨率Landsat TM/ETM+/OLI、Sentinel-2等 | 可行 | 可行 | 可行 | 大 | 偏低 | 低廉 | ||
高光谱Hyperion等 | 可行 | 可行 | 较小 | 较高 | 高昂 | |||
低空无人机相机 | 可行 | 可行 | 可行 | 可行 | 小 | 高 | 中等 |
图2 海草的光谱反射率曲线(Lyzenga, 1978)Fig. 2 Spectral reflectance curve of seagrass |
图4 基于光学遥感影像的海草地图绘制流程(Misbari et al, 2016)Fig. 4 Seagrass mapping process based on optical remote sensing image |
图5 3种海草的光谱特征及波长(曲线值取其平均值±标准差)相关结果引用自Hossain等(2015)和Fyfe(2003)Fig. 5 Spectral characteristics and wavelengths of three species of seagrass (mean value ± standard deviation for the curve) |
[1] |
陈石泉, 王道儒, 吴钟解, 等, 2015a. 海南岛东海岸海草床近10A变化趋势探讨[J]. 海洋环境科学, 34(1):48-53.
|
[2] |
陈石泉, 吴钟解, 陈晓慧, 等, 2015b. 海南岛南部海草资源分布现状调查分析[J]. 海洋学报, 37(6):106-113.
|
[3] |
黄荣永, 余克服, 王英辉, 等, 2019. 珊瑚礁遥感研究进展[J]. 遥感学报, 23(6):1091-1112.
|
[4] |
黄小平, 黄良民, 李颖虹, 等, 2006. 华南沿海主要海草床及其生境威胁[J]. 科学通报, 51(S3):114-119.
|
[5] |
黄小平, 江志坚, 张景平, 等, 2018. 全球海草的中文命名[J]. 海洋学报, 40(4):127-133.
|
[6] |
王道儒, 吴钟解, 陈春华, 等, 2012. 海南岛海草资源分布现状及存在威胁[J]. 海洋环境科学, 31(1):34-38.
|
[7] |
杨超宇, 杨顶田, 赵俊, 2010. 光学浅水海草高光谱识别[J]. 热带海洋学报, 29(2):74-79.
|
[8] |
杨顶田, 2007. 海草的卫星遥感研究进展[J]. 热带海洋学报, 26(4):82-86.
|
[9] |
杨顶田, 刘素敏, 单秀娟, 2013. 海草碳通量的卫星遥感检测研究进展[J]. 热带海洋学报, 32(6):108-114.
|
[10] |
杨宗岱, 1979. 中国海草植物地理学的研究[J]. 海洋湖沼通报, (2):41-46.
|
[11] |
郑凤英, 邱广龙, 范航清, 等, 2013. 中国海草的多样性、分布及保护[J]. 生物多样性, 21(5):517-526.
|
[12] |
周元慧, 胡刚, 张忠华, 等, 2019. 基于Web of Science的国际海草研究文献计量评价[J]. 生态学报, 39(11):4200-4211.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
/
〈 |
|
〉 |