Journal of Tropical Oceanography >
Isolation and genetic diversity analysis of microsatellites from nine species of familiar snappers
Received date: 2008-03-25
Revised date: 2008-07-15
Online published: 2010-05-24
Supported by
国家自然科学基金资助项目(30671610), 国家科技支撑计划项目(2007BAD29B03)
Thirty-seven microsatellite loci were isolated from the genomic library of L. russellii with PCR. Cross-species isolations with those markers were carried out for nine familiar species of snappers (L. erythropterus, L. argentimaculatus, L. stellatus, L. johnii, L. sebae, L. fulvus, L. fulviflamma, L. vitta and L. ophuysenii), and their genetic diversities were also evaluated. There were 10 microsatellite loci isolated successfully in nine species and 13 loci in partial species. The average expected heterozygosity, average observed heterozygosity and Hardy–Weinberg departure index under Hardy–Weinberg equilibrium in the nine species of snappers were 0.730?1.000, 0.716?0.915, (-0.002) -(-0.214), respectively. The results indicate that the genetic diversities of genus Lutjanus is in a relatively high level. In addition, the clear explain of prevalent absence of heterozygotes in all research species may request further research on fishes of genus Lutjanus.
GUO Yu-song,WANG Zhong-duo,LIU Chu-wu,CHEN Zhi-ming,LIU Yun . Isolation and genetic diversity analysis of microsatellites from nine species of familiar snappers[J]. Journal of Tropical Oceanography, 2010 , 29(3) : 82 -86 . DOI: 10.11978/j.issn.1009-5470.2010.03.082
[1] 张俊彬, 黄良民, 陈真然. AFLP技术在笛鲷的仔鱼鉴定及其分类学上的研究[J]. 海洋学报, 2005, 27(2): 165-171.
[2] 朱世华, 杨迎春, 沈锡权, 等. 从细胞色素b 基因序列探讨笛鲷属的分子系统发生关系[J]. 动物学报, 2006, 52(3): 514-521.
[3] 肖翔, 刘楚吾. 4种笛鲷属鱼类mtDNA的RFLP研究[J]. 热带海洋学报, 2005, 24(6): 22-30.
[4] 王中铎, 刘楚吾, 郭昱嵩. 5种笛鲷mtDNA及Cyt b基因片段的RFLP比较[J]. 水产学报, 2005, 29(3): 327-332.
[5] 刘丽, 刘楚吾. 5 种笛鲷属鱼类的遗传多样性及分子标记[J]. 农业生物技术学报, 2006, 14(003): 349-355.
[6] 郭昱嵩, 王中铎, 刘楚吾, 等. 勒氏笛鲷微卫星位点的筛选及特征分析[J]. 遗传, 2007, 29(3): 355-359.
[7] OVENDEN J R, STREET R. Genetic population structure of mangrove jack, Lutjanus argentimaculatus (Forsskal) [J]. Marine and Freshwater Research, 2003, 54(2): 127-137.
[8] DORENBOSCH M, POLLUX B J, PUSTJENS A Z, et al. Population structure of the Dory snapper, Lutjanus fulviflamma, in the western Indian Ocean revealed by means of AFLP fingerprinting[J]. Hydrobiologia, 2006, 568(1): 43-53.
[9] LO L O, ZHU Z E, YUE G E. Multiplex genotyping of novel tetranucleotide microsatellites from a marine foodfish species crimson red snapper (Lutjanus erythropterus) [J]. Molecular Ecology Notes, 2006, 6(2): 524-526.
[10] SAMBROOK J, FRITSCH E F, MANIATIS T. Molecular Clone: A Laboratory Manual[M]. New York: Cold Spring Harbor Laboratory Press, 1989.
[11] GUO YU-SONG, WANG ZHONG-DUO, LIU CHU-WU, et al. Isolation and characterization of microsatellite DNA loci from Russell's snapper (Lutjanus russellii)[J]. Molecular Ecology Notes, 2007, 7: 1219-1221.
[12] SANGUINETTI C L, DIAS NETO E S A. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels[J]. Biotechniques. 1994, 17: 915-919.
[13] BONFERRONI CE ll calcolo delle assicurazioni su gruppi diteste[C]//Studi in Onore Del Professore Salvatore Ortu Carboni. Rome, Italy, 1935.
[14] BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms
[J]. American Journal of Human Genetics, 1980, 32(3): 314-331.
[15] GALBUSERA P, VAN D S, MATTHYSEN E. Cross-species amplification of microsatellite primers in passerine birds[J]. Conservation Genetics, 2000, 1(2): 163-168.
[16] LILLANDT B O, BENSCH S, HANSSON B, et al. Isolation and cross-species amplification of microsatellite loci in the Siberian jay (Perisoreus infaustus) [J]. Hereditas, 2002, 137(2): 157-160.
[17] STRECKER U. Characterization and cross-species amplification of microsatellite loci in a Cyprinodon species flock [J]. Molecular Ecology Notes, 2006, 6(3): 843-846.
[18] CALLEN D F, THOMPSON A D, SHEN Y, et al. Incidence and origin of ‘null’alleles in the (AC) n microsatellite markers[J]. American Journal of Human Genetics, 1993, 52: 922-927.
[19] PAETKAU D, STROBECK C. The molecular basis and evolutionary history of a microsatellite null allele in bears[J]. Molecular ecology, 1995, 4(4): 519-520.
[20] PEMBERTON J M, SLATE J, BANCROFT D R, et al. Non-amplifying alleles at microsatellite loci: a caution for parentage and fingerprinting studies
[J]. Molecular ecology, 1995, 4(2): 249-252.
[21] HEDGECOCK D, LI G, HUBERT S, et al. Widespread null alleles and poor cross-species amplification of microsatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas [J]. Journal of Shellfish Research, 2004, 23(2): 379-385.
[22] LEHMANN T, HAWLEY W A, COLLINS F H. An Evaluation of Evolutionary Constraints on Microsatellite Loci Using Null Alleles[J]. Genetics, 1996, 144(3): 1155-1163.
[23] TABERLET P, CAMARRA J J, GRIFFIN S, et al. Noninvasive genetic tracking of the endangered Pyrenean brown bear population[J]. Molecular Ecology, 1997, 6(9): 869-876.
[24] 王中仁. 植物等位酶分析[M]. 北京: 科学出版社, 1996.
[25] 徐成, 王可玲, 张培军. 鲈鱼群体生化遗传学研究 Ⅱ. 种群生化遗传结构及变异[J]. 海洋与湖沼. 2001, 32(3): 248-254.
[26] ZOUROS E. On the relation between heterozygosity and heterosis: an evaluation of the evidence from marine mollusks[J]. Isozymes. Current Topics in Biological and Medical Research, 1987, 15(3): 255-270.
[27] DEWOODY J A, AVISE J C. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals[J]. Journal of Fish Biology, 2000, 56(3): 461-473.
/
〈 |
|
〉 |