Marine Biology

Study on the polyketides from a cold-seep-derived Talaromyces helicus SCSIO41311

  • CONG Mengjing , 1, 3 ,
  • HU Yiwei 1, 3 ,
  • ZHAO Kai 1 ,
  • ZHANG Xiaoyong 2 ,
  • LIU Yonghong 1, 3 ,
  • WANG Junfeng , 1, 3
Expand
  • 1. CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • 2. College of Marine Science, South China Agricultural University, Guangzhou 510642, China
  • 3. University of the Chinese Academy of Sciences, Beijing 100049, China
WANG Junfeng. email:

Copy editor: YIN Bo

Received date: 2021-12-01

  Revised date: 2021-12-17

  Online published: 2021-12-21

Supported by

Finance Science and Technology Project of Hainan Province(ZDKJ202018)

National Natural Science Foundation of China(41776169)

Guangdong Basic and Applied Basic Research Foundation(2021A1515011523)

Abstract

In this study, we aim to investigate the secondary metabolites of polyketides from the South China Sea cold-seep-derived Talaromyces helicus SCSIO41311. The polyketides were isolated by normal phase silica gel column chromatography, reverse phase silica gel column chromatography, Sephadex LH-20, high-performance liquid chromatography (HPLC) and thin layer chromatography (TLC). The structures of compounds were identified by nuclear magnetic resonance spectrum (NMR), mass spectrometry (MS) and literature analysis. Seven polyketides were obtained and elucidated as follows: desmethylsulochrin (1), sulochrin (2), monomethylsulochrin (3), circinophoric acid (4), dimethyl 2,3-dimethylosoate (5), endocrocin (6) and 1-methyl emodin (7). All compounds were obtained for the first time from deep sea cold-seep. NMR data of 1 was firstly reported.

Cite this article

CONG Mengjing , HU Yiwei , ZHAO Kai , ZHANG Xiaoyong , LIU Yonghong , WANG Junfeng . Study on the polyketides from a cold-seep-derived Talaromyces helicus SCSIO41311[J]. Journal of Tropical Oceanography, 2022 , 41(5) : 117 -120 . DOI: 10.11978/2021168

深海约占海洋的95%, 含有复杂多变的海底环境和丰富多样的生物资源。目前海洋微生物天然产物大多来源于海洋真菌及海洋放线菌, 为了充分开发利用海洋微生物天然产物, 就应积极寻找更多新来源和新环境(马丽丽 等, 2021)。继热液之后, 冷泉于1983年首次在墨西哥湾佛罗里达陡崖3200m的深海底被发现(Paull et al, 1984), 主要成分为CH4、H2S、CO2等。冷泉中的甲烷氧化菌和硫酸盐还原菌可以为化能自养生物提供所需的碳源和能量, 被誉为“深海绿洲”(Li et al, 1999)。正是由于其极端的环境孕育了特殊的生物群落, 使得其次生代谢产物结构也更为新颖。如从南海冷泉来源Aspergillus insuetus SD-512中分离得到有广谱抗菌活性的化合物farnesylemefuranones D-F (Chi et al, 2020); 从南海冷泉来源Aspergillus nidulans SD-531的培养液中分离得到1个新的无环过氧化物衍生物asperoxide A (Lü et al, 2020)。但受采样困难等因素限制, 目前对冷泉来源的次级代谢产物研究相对较少。本文重点对一株冷泉来源的真菌Talaromyces helicus SCSIO41311化学成分进行研究, 共得到7个聚酮类化合物(图1)。所有化合物均为首次从深海冷泉微生物中得到。
图 1 来源于南海冷泉真菌Talaromyces helicus SCSIO41311中的聚酮类化合物1~7

Fig. 1 Polyketides 1 ~ 7

1 试验部分

1.1 仪器与试剂

仪器: Brucker Avance 700核磁共振仪(德国Bruker公司); Brucker Avance 500核磁共振仪(德国Bruker公司); 质谱仪(Waters公司 XEVO TQD); 中压色谱仪(瑞士Buchi公司LC3000); 高效液相色谱仪(日本岛津公司 LC10AVP); EYELAN-1001型旋转蒸发仪(上海爱朗仪器有限公司); 半制备色谱柱: YMC-Pack, ODS-A, 250×10mm, S-5μM (YMC公司); 萘基柱: π NAP, 10ID×250mm (COSMOSIL公司); Combi Flash柱色谱: Irregular C18, 40~63μM (santaitech公司)。
试剂: 石油醚、二氯甲烷、甲醇等为化学纯(广州化学试剂厂); 液相色谱乙腈、甲醇为色谱纯(上海星可高纯溶剂有限公司); 柱层析硅胶和薄层硅胶板(青岛海洋化工有限公司)。

1.2 样品来源

南海冷泉来源真菌Talaromyces helicus SCSIO41311于2020 年7月采自台湾西南海域(119°17′10″E、22°6′55″N)水深1138m保真的冷泉区沉积物样品, 经张晓勇副教授对其进行种属鉴定, 确定其为Talaromyces helicus。样品标本(编号: SCSIO41311)保存于中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室。

1.3 培养基和菌株发酵培养

试验用培养基包括PDA培养基: 马铃薯200g, 葡萄糖20g, 琼脂15~20g, 蒸馏水1000mL; MB培养液: 麦芽粉15g, 海盐2.5g, 蒸馏水1000mL, pH 7.4~7.8; 大米培养基: 大米200g, 海盐2.5g, 蒸馏水250mL。
菌株解冻后接种到PDA固体培养基上, 置于28℃培养箱培养7d。用接种针挑取适量孢子, 接种到含15mL MB培养液的150mL培养瓶中, 在 25℃, 180r·min-1摇床条件下培养3d。将培养好的种子液(3.0mL·瓶-1)分别接种到54瓶(1L)灭菌后的大米培养基中静置培养40d。

1.4 提取分离纯化

发酵完毕后菌株用两倍体积乙酸乙酯浸泡, 然后将大米捣碎, 超声15~20min后用纱布进行过滤, 滤液减压浓缩以除去乙酸乙酯, 然后再用两倍体积乙酸乙酯萃取3次, 浓缩后得到乙酸乙酯粗浸膏, 滤渣继续用乙酸乙酯提取3次, 合并以上乙酸乙酯部分减压浓缩得到总粗浸膏(41g)。通过薄层层析分析, 最终合并成7个组分Fr.1~Fr.7 (100~200目正向硅胶, 洗脱剂体系V二氯甲烷:V甲醇=100:0 ~ 20:80)。
Fr.1 (2.1g)经Combi Flash柱色谱、乙腈-水梯度洗脱, 合并为7个组分Fr.1-1~Fr.1-7。其中Fr.1-4 (360mg)经甲醇溶解, 半制备HPLC纯化(ODS-A色谱柱、V甲醇:V=65:35、3mL·min-1)洗脱后分别获得亚组分Fr.141和化合物7 (7.2mg、τR=22.3min); Fr.141 (107mg)再经半制备HPLC纯化(ODS-A色谱柱、V乙腈: V=38:62、3mL·min-1)获得化合物3 (24.1mg、τR= 28.2min)和化合物5 (2.6mg、τR=21.7min)。
Fr.3 (2.7g)经Combi Flash柱色谱、乙腈-水梯度洗脱, 合并为7个组分Fr.3-1~Fr.3-7。其中Fr.3-4 (78mg)经甲醇溶解, 半制备HPLC纯化(ODS-A色谱柱、V乙腈: V酸水=75:25、3mL·min-1)洗脱后获得化合物1 (25.12mg、τR=20.0min)。Fr.3-5 (259mg)经甲醇溶解, 半制备HPLC纯化(ODS-A色谱柱、V乙腈:V酸水=72:28、3mL·min-1)洗脱后分离分别获得亚组分Fr.354和化合物2 (12.02mg、τR=35.0min)。Fr.354 (65mg)再经半制备HPLC纯化(ODS-A色谱柱、V甲醇:V酸水=48:52、3mL·min-1)洗脱后获得化合物4 (10.65mg、τR=13.6min)。Fr.3-6 (87mg)甲醇溶解, 经半制备HPLC二次纯化(萘基柱、V乙腈:V酸水=42:58、3mL·min-1)洗脱后获得化合物6 (9.7mg、τR=21.0min)。

2 结果与讨论

化合物1: 淡黄色粉末; ESI-MS m/z: 319 [M+H]+1H NMR (700MHz, DMSO-d6), δH: 11.44 (2H, s, 11, 15-OH), 6.89 (1H, d, J=2.2Hz, H-5), 6.63 (1H, d, J=2.2Hz, H-3), 6.06 (2H, s, H-12, H-14), 3.63 (3H, s, H-7), 2.15 (3H, s, H-16)。13C NMR (176MHz, DMSO-d6), δC: 22.0 (q, C-16), 56.4 (q, C-7), 103.4 (d, C-3), 108.0 (d, C-5), 108.0 (d, C-12, C-14), 109.7 (s, C-10), 126.6 (s, C-1), 129.8 (s, C-6), 147.5 (s, C-13), 157.1 (s, C-2), 158.4 (s, C-4), 162.1 (s, C-11, C-15), 167.2 (s, C-8), 200.6 (s, C-9)。根据核磁数据分析与文献(Boruta et al, 2016)比对, 确定其结构为desmethylsulochrin, 本研究首次报道了其核磁数据。
化合物2: 淡黄色粉末; ESI-MS m/z: 333 [M+H]+1H NMR (500MHz, DMSO-d6), δH: 11.44 (2H, s, 12, 16-OH), 6.90 (1H, d, J=2.1Hz, H-5), 6.68 (1H, d, J=2.1Hz, H-3), 6.08 (2H, s, H-13, H-15), 3.64 (3H, s, H-7), 3.63 (3H, s, H-9), 2.15 (3H, s, H-17)。13C NMR (125MHz, DMSO-d6), δC: 21.6 (q, C-17), 52.1 (q, C-9), 56.0 (q, C-7), 103.4 (d, C-3), 107.2 (d, C-5), 107.6 (d, C-13, C-15), 109.2 (s, C-11), 126.2 (s, C-1), 127.3 (s, C-6), 147.4 (s, C-14), 156.8 (s, C-2), 158.8 (s, C-4), 161.1 (s, C-12, C-16), 165.7 (s, C-8), 199.7 (s, C-10)。以上数据与文献(Lee et al, 2002)对照, 基本一致, 确定化合物结构为硫赭曲菌素(sulochrin)。
化合物3: 白色粉末; ESI-MS m/z: 369 [M+Na]+1H NMR (500MHz, DMSO-d6), δH: 12.96 (1H, s, 6°-OH), 6.89 (1H, d, J=2.0Hz, H-5), 6.69 (1H, d, J=2.8Hz, H-3), 6.38 (1H, s, H-5°), 6.26 (1H, s, H-3°), 3.63 (3H, s, H-9), 3.62 (3H, s, H-8), 3.33 (3H, s, H-7°), 2.25 (3H, s, H-8°)。13C NMR (125MHz, DMSO-d6), δC: 22.0 (q, C-8°), 52.2 (q, C-8), 56.0 (q, C-7°), 103.3 (d, C-3), 103.6 (d, C-3°), 107.3 (d, C-5), 110.2 (d, C-5°), 110.2 (s, C-1°), 125.8 (s, C-1), 128.1 (s, C-6), 148.0 (s, C-4°), 156.8 (s, C-2), 158.4 (s, C-4), 160.9 (s, C-2°), 163.4 (s, C-6°), 165.9 (s, C-7), 199.5 (s, C-10)。以上数据与文献(Ma et al, 2004)对照, 基本一致, 确定化合物结构为单甲基硫赭曲菌素(monomethylsulochrin)。
化合物4: 白色晶体; ESI-MS m/z: 385 [M+Na]+1H NMR (500MHz, DMSO-d6), δH: 6.75 (1H, d, J=2.8Hz, H-3°), 6.74 (1H, d, J=2.8Hz, H-5°), 6.49 (1H, s, H-5), 5.76 (1H, s, H-3), 3.76 (3H, s, H-8), 3.68 (3H, s, H-9°), 3.17 (3H, s, H-8°), 2.14 (3H, s, H-9)。13C NMR (125MHz, DMSO-d6), δC: 21.6 (q, C-9), 52.2 (q, C-8°), 55.8 (q, C-8), 56.1 (q, C-9°), 104.8 (d, C-3°), 105.2 (d, C-5), 105.8 (d, C-3), 107.4 (d, C-5°), 111.3 (s, C-1), 125.9 (s, C-6°), 133.6 (s, C-1°), 139.8 (s, C-4), 153.5 (s, C-2°), 155.2 (s, C-4°), 155.6 (s, C-2), 156.4 (s, C-6), 165.5 (s, C-7°), 166.5 (s, C-7)。以上数据与文献(Buttachon et al, 2016)对照, 基本一致, 确定化合物结构为circinophoricacid。
化合物5: 白色粉末; ESI-MS m/z: 399 [M+Na]+1H NMR (700MHz, DMSO-d6), δH: 6.76 (1H, d, J=2.8Hz, H-5), 6.75 (1H, d, J=2.8Hz, H-3), 6.52 (1H, s, H-4°), 5.79 (1H, s, H-6°), 3.76 (3H, s, H-8°), 3.75 (3H, s, H-9°), 3.68 (3H, s, H-8), 3.61 (3H, s, H-9), 2.15 (3H, s, H-10°)。13C NMR (176MHz, DMSO-d6), δC: 21.7 (q, C-10°), 52.0 (q, C-8°), 52.1 (q, C-8), 55.9 (q, C-9°), 56.1 (q, C-9), 104.8 (d, C-4°), 105.3 (d, C-3), 105.9 (d, C-6°), 107.5 (d, C-5), 109.7 (s, C-2°), 125.8 (s, C-6), 133.5 (s, C-1), 140.8 (s, C-5°), 153.5 (s, C-4), 155.3 (s, C-2), 156.7 (s, C-3°), 165.3 (s, C-7°), 165.8 (s, C-7)。以上数据与文献(Liu et al, 2006)对照, 基本一致, 确定化合物结构为dimethyl 2,3-dimethylosoate。
化合物6: 黄色粉末; ESI-MS m/z: 315 [M+H]+1H NMR (700MHz, DMSO-d6), δH: 11.97 (1H, s, 12-OH), 11.46 (1H, s, 1, 8, 6-OH), 7.54 (1H, s, H-4), 7.13 (1H, d, J=2.5Hz, H-5), 6.61 (1H, d, J=2.4Hz, H-7), 2.39 (3H, s, H-11)。13C NMR (176MHz, DMSO-d6), δC: 19.6 (q, C-11), 108.0 (d, C-7), 109.0 (d, C-5), 109.1 (s, C-8a), 113.9 (s, C-9a), 120.6 (d, C-4), 130.6 (s, C-2), 132.5 (s, C-10a), 135.1 (s, C-4a), 143.5 (s, C-3), 157.7 (s, C-1), 164.5 (s, C-8), 165.8 (s, C-6), 167.1 (s, C-12), 181.0 (s, C-10), 189.5 (s, C-9)。以上数据与文献(Liu et al, 2006)对照, 基本一致, 确定化合物结构为山扁豆酸(endocrocin)。
化合物7: 橙色粉末; ESI-MS m/z: 285 [M+H]+1H NMR (700MHz, DMSO-d6), δH: 13.3 (1H, s, 1-OH), 7.4 (1H, d, J=1.5Hz, H-4), 7.17 (1H, d, J=2.3Hz, H-5), 7.1 (1H, d, J=1.5Hz, H-2), 6.8 (1H, d, J=2.4Hz, H-7), 3.88 (3H, s, H-12), 2.88 (3H, s, H-11)。13C NMR (176MHz, DMSO-d6), δC: 21.4 (q, C-11), 56.3 (q, C-12), 105.0 (d, C-7), 107.4 (d, C-5), 112.2 (s, C-8a), 114.4 (s, C-9a), 119.0 (d, C-4), 124.1 (d, C-2), 132.1 (s, C-4a), 136.8 (s, C-10a), 146.5 (s, C-3), 161.7 (s, C-1), 163.1 (s, C-8), 165.3 (s, C-6), 182.4 (s, C-10), 186.1 (s, C-9)。以上数据与文献(Hawas et al, 2012) 对照, 基本一致, 确定化合物结构为大黄素-1-甲醚(1-methylemodin)。
本文研究了南海冷泉来源真菌Talaromyces helicus中的次生代谢产物, 共分离得到7个聚酮类化合物。聚酮类化合物在药物化学中扮演着重要角色, 是生物合成中的常见中间体, 且大多具有多种多样的活性, 因此对聚酮类化合物的研究具有重要意义(Inokuma et al, 2020)。在本研究中, 所有化合物均为首次从深海冷泉微生物中得到, 化合物1首次报道了其核磁数据; 化合物35对K562细胞体外有不同程度的细胞毒活性(Liu et al, 2006); 化合物6具有局部抗炎活性, 对COX-1、COX-2均有较强烈的抑制作用, IC50分别为40.02μmol、25.76μmol (Gautam et al, 2010); 化合物7有抗丙型肝炎(HCV)活性, IC50为40.2μg·mL-1 (Hawas et al, 2012)。综上所述, 虽然对聚酮类的研究已经较为深入, 但是对于特殊极端环境来源的聚酮类化合物研究较少, 这项研究中从南海冷泉来源真菌Talaromyces helicus中分离鉴定得到一系列具有生物活性的化合物, 启示我们可以进一步通过结构修饰等手段探索冷泉微生物来源次生代谢产物的潜在药用价值。
[1]
马丽丽, 田新朋, 李桂菊, 等, 2021. 海洋微生物来源天然产物研究现状与态势[J]. 热带海洋学报, 40(5): 134-146.

DOI

MA LILI, TIAN XINPENG, LI GUIJU, et al, 2021. Research status and development trends of natural products from marine microorganisms[J]. Journal of Tropical Oceanography, 40(5): 134-146. (in Chinese with English abstract)

DOI

[2]
BORUTA T, BIZUKOJC M, 2016. Induction of secondary metabolism of Aspergillus terreus ATCC 20542 in the batch bioreactor cultures[J]. Applied Microbiology and Biotechnology, 100(7): 3009-3022.

DOI

[3]
BUTTACHON S, ZIN W W M, DETHOUP T, et al, 2016. Secondary metabolites from the culture of the marine sponge-associated fungi Talaromyces tratensis and Sporidesmium circinophorum[J]. Planta Medica, 82(9-10): 888-896.

DOI

[4]
CHI LUPING, LI XIAOMING, WAN YUPENG, et al, 2020. Ophiobolin sesterterpenoids and farnesylated phthalide derivatives from the deep sea cold-seep-derived fungus Aspergillus insuetus SD-512[J]. Journal of Natural Products, 83(12): 3652-3660.

DOI

[5]
GAUTAM R, KARKHILE K V, BHUTANI K K, et al, 2010. Anti-inflammatory, cyclooxygenase (COX)-2, COX-1 inhibitory, and free radical scavenging effects of Rumex nepalensis[J]. Planta Medica, 76(14): 1564-1569.

DOI

[6]
HAWAS U W, EL-BEIH A A, EL-HALAWANY A M, 2012. Bioactive anthraquinones from endophytic fungus Aspergillus versicolor isolated from red sea algae[J]. Archives of Pharmacal Research, 35(10): 1749-1756.

DOI

[7]
INOKUMA Y, YONEDA T, IDE Y, et al, 2020. Aliphatic polyketones as classic yet new molecular ropes for structural diversity in organic synthesis[J]. Chemical Communications, 56(64): 9079-9093.

DOI

[8]
LEE H J, LEE J H, HWANG B Y, et al, 2002. Fungal metabolites, asterric acid derivatives inhibit vascular endothelial growth factor (VEGF) -induced tube formation of HUVECs[J]. The Journal of Antibiotics, 55(6): 552-556.

DOI

[9]
LI LINA, KATO C, HORIKOSHI K, 1999. Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench[J]. Marine Biotechnology, 1(4): 391-400.

PMID

[10]
LIU RUI, ZHU WEIMING, ZHANG YAPENG, et al, 2006. A new diphenyl ether from marine-derived fungus Aspergillus sp. B-F-2[J]. The Journal of Antibiotics, 59(6): 362-365.

DOI

[11]
FENGYI, LI XIAOMING, CHI LUPING, et al, 2020. A new acyclic peroxide from Aspergillus nidulans SD-531, a fungus obtained from deep-sea sediment of cold spring in the south China sea[J]. Journal of Oceanology and Limnology, 38(4): 1225-1232.

DOI

[12]
MA Y M, LI YANG, LIU JUNYAN, et al, 2004. Anti-Helicobacter pylori metabolites from Rhizoctonia sp. cy064, an endophytic fungus in Cynodon dactylon[J]. Fitoterapia, 75(5): 451-456.

DOI

[13]
PAULL C K, HECKER B, COMMEAU R, et al, 1984. Biological communities at the Florida escarpment resemble hydrothermal vent taxa[J]. Science, 226(4677): 965-967.

PMID

Outlines

/