Journal of Tropical Oceanography >
Assimilating MWHS-2 radiance of FY-3D satellite and its influence on the forecast of Typhoon Mitag*
Copy editor: YIN Bo
Received date: 2021-11-16
Revised date: 2022-01-11
Online published: 2022-01-17
Supported by
Major Program of National Natural Science Foundation of China(42192553)
Shanghai Academic / Technology Research Leader(21XD1404500)
Shanghai Typhoon Research Foundation(TFJJ202107)
National Natural Science Foundation of China(G41805016)
National Natural Science Foundation of China(G41805070)
Jiangsu Province Natural Science Fund(BK20201506)
Research Project of Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province in China(SZKT201904)
Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX22_1163)
Based on the module of directly assimilating MWHS-2 (microwave humidity sounder 2) radiance of FY-3D in the WRF (weather research and forecasting) model, this study investigates the influence of assimilating clear-sky MWHS-2 radiance on the forecast of Typhoon Mitag (2019) by using the 3DVar (three dimensional variation) assimilation method. Four experiments are designed. No assimilation is performed in the first one, while only GTS (global telecommunications system) data are used in the second one. Further, the assimilation of both GTS data and MWHS-2 radiance is carried out in the third one. The fourth one replaces MWHS-2 radiance with ATMS (advanced technology microwave sounder) radiance. The results show that the mean differences of all channels between the observation and the background verge to 0 after the bias correction. In addition, compared with the background field, the standard deviation and root mean square error of the analysis field versus the observation decrease significantly after the assimilation, which demonstrates the effectiveness of assimilation. Compared with the experiment only assimilating GTS data and the experiment assimilating ATMS radiance, a negative height increment and a positive temperature increment are observed near the typhoon center after assimilating clear-sky MWHS-2 radiance, which contributes to the maintenance of typhoon from the dynamic and thermal aspects. In the last 12 hours of the deterministic forecast, the experiment assimilating clear-sky MWHS-2 radiance is able to improve the 500 hPa circulation simulation with stronger southwest steering flow, which finally reduces the error of typhoon track forecast.
SHU Aiqing , XU Dongmei , LI Hong , WU Haiying , SHEN Feifei , DEND Hua , BAI Yawen . Assimilating MWHS-2 radiance of FY-3D satellite and its influence on the forecast of Typhoon Mitag*[J]. Journal of Tropical Oceanography, 2022 , 41(5) : 17 -28 . DOI: 10.11978/2021160
表1 MWHS-2微波湿度计各通道特征Tab. 1 The characterictics of each channel of MWHS-2 |
通道 | 中心频率/GHz | 极化方式 | 带宽/MHz | 频率稳定度/MHz | 灵敏度/K | 主波束宽度/(°) | 主波束效率/% |
---|---|---|---|---|---|---|---|
1 | 89.0 | V | 1500 | 50 | 1.0 | 2.0 | >92 |
2 | 118.75±0.08 | H | 20 | 30 | 3.6 | 2.0 | >92 |
3 | 118.75±0.2 | H | 100 | 30 | 2.0 | 2.0 | >92 |
4 | 118.75±0.3 | H | 165 | 30 | 1.6 | 2.0 | >92 |
5 | 118.75±0.8 | H | 200 | 30 | 1.6 | 2.0 | >92 |
6 | 118.75±1.1 | H | 200 | 30 | 1.6 | 2.0 | >92 |
7 | 118.75±2.5 | H | 200 | 30 | 1.6 | 2.0 | >92 |
8 | 118.75±3.0 | H | 1000 | 30 | 1.0 | 2.0 | >92 |
9 | 118.75±5.0 | H | 2000 | 30 | 1.0 | 2.0 | >92 |
10 | 150.0 | V | 1500 | 50 | 1.0 | 1.1 | >95 |
11 | 183.31±1 | H | 500 | 30 | 1.0 | 1.1 | >95 |
12 | 183.31±1.8 | H | 700 | 30 | 1.0 | 1.1 | >95 |
13 | 183.31±3 | H | 1000 | 30 | 1.0 | 1.1 | >95 |
14 | 183.31±4.5 | H | 2000 | 30 | 1.0 | 1.1 | >95 |
15 | 183.31±7 | H | 2000 | 30 | 1.0 | 1.1 | >95 |
图2 试验流程图GFS为全球预报系统再分析资料, GTS为全球通信系统常规观测资料, RADIANCE为卫星辐射率资料; 数字表示日期(日时) Fig. 2 Workflow of experiments |
表2 各组试验对比Tab. 2 The comparison of each experiment |
试验名称 | 同化的资料 |
---|---|
CNTL | 无 |
GTS_DA | GTS常规资料 |
MWHS_DA | GTS常规资料和MWHS-2辐射率资料 |
ATMS_DA | GTS常规资料和ATMS辐射率资料 |
图4 2019年09月30日06时(a、b)和18时(c、d)偏差订正后观测亮温减去背景场模拟亮温(a、c)和观测亮温减去分析场模拟亮温(b、d)图图中红色台风符号代表此刻台风中心位置。该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2021)5449的标准地图制作 Fig. 4 OMB (a, c) and OMA (b, d) of brightness temperature (units: K) after the bias correction, at 06:00 UTC on 30th September 2019 (a, b) and at 18:00 UTC on 30th September 2019 (c, d). The red typhoon symbol represents the observed location of typhoon |
图5 2019年09月30日06时(a、b、c)和18时(d、e、f)通道11偏差订正前观测与背景亮温(a、d)、偏差订正后观测与背景亮温(b、e)和偏差订正后观测与分析亮温(c、f)散点图Fig. 5 Scatter plots of channel 11 brightness temperature background versus observation before bias correction (a, d), background versus observation after bias correction (b, e), analysis versus observation (c, f) after bias correction, at 06:00 UTC on 30th September 2019 (a, b, c) and at 18:00 UTC on 30th September 2019 (d, e, f) |
图6 2019年09月30日06时(a、b、c)和18时(d、e、f)通道11偏差订正前观测亮温减去背景场模拟亮温(a、d)、偏差订正后观测亮温减去背景场模拟亮温(b、e)和偏差订正后观测亮温减去分析场模拟亮温(c、f)频率分布直方图OMB为观测亮温减去背景场模拟亮温, OMA为观测亮温减去分析场模拟亮温 Fig. 6 Frequency histograms of channel 11 OMB before the bias correction (a, d), OMB after bias correction (b, e), OMA after bias correction (c, f) at 06:00 UTC on 30th September 2019 (a, b, c) and at 18:00 UTC on 30th September 2019 (d, e, f) |
图7 2019年09月30日06时500hPa位势高度增量a. GTS_DA试验; b. MWHS_DA试验; c. MWHS_DA与GTS_DA试验之差; d. ATMS_DA与GTS_DA试验之差。红色台风符号代表此刻台风中心位置。该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2021)5449的标准地图制作 Fig. 7 500 hPa potential increment (units: gpm) of GTS_DA experiment (a), MWHS_DA experiment (b), the difference between MWHS_DA and GTS_DA experiment (c), the difference between ATMS_DA and GTS_DA experiment (d) at 06:00 UTC on 30th September 2019. The red typhoon symbol represents the observed location of typhoon |
图8 2019年09月30日06时500hPa温度增量a. GTS_DA试验; b. MWHS_DA试验; c. MWHS_DA与GTS_DA试验之差; d. ATMS_DA与GTS_DA试验之差。红色台风符号代表此刻台风中心位置。该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2021)5449的标准地图制作 Fig. 8 500 hPa temperature increment (units: K) of GTS_DA experiment (a), MWHS_DA experiment (b), the difference between MWHS_DA and GTS_DA experiment (c), the difference between ATMS_DA and GTS_DA experiment (d) at 06:00 UTC on 30th September 2019. The red typhoon symbol represents the observed location of typhoon |
图9 2019年10月2日09时GTS_DA试验(a)、MWHS_DA试验(b)、ATMS_DA试验(c) 500hPa位势高度和风矢量图中红色五边形区域突出了试验间的差异。该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2021)5447的标准地图制作 Fig. 9 500 hPa geopotential height (units: m) and wind vectors (units: m·s-1) of GTS_DA experiment (a), MWHS_DA experiment (b), ATMS_DA experiment (c) at 0600 UTC 30th September 2019. The red pentagon area highlights the differences of all experiments |
[1] |
范娇, 2019. FY-3C微波湿度计资料在西南涡降水预报中的同化研究[D]. 成都: 成都信息工程大学:17-29.
|
[2] |
蒋璐璐, 涂小萍, 王毅, 等, 2021. “米娜”(1918)台风浪特征及其与“利奇马”(1909)的差异[J]. 海洋预报, 38(4): 53-60.
|
[3] |
蒋璐西, 陈科艺, 陈林琳, 2019. MWHS/FY-3资料同化在四川盆地暴雨预报中的应用研究[J]. 高原山地气象研究, 39(4): 9-15.
|
[4] |
刘贝, 卢绍宗, 钱钰坤, 等, 2014. ATOVS亮温资料同化在台风数值模拟中的应用[J]. 热带海洋学报, 33(1): 44-53.
|
[5] |
刘淑贤, 2021. FY3C MWHS-2的陆地降水检测算法研究及其在LAPS-WRF同化系统中的应用[D]. 南京: 南京信息工程大学:26-57.
|
[6] |
马刚, 王云峰, 张晓辉, 等, 2017. 基于梯度信息的微波辐射亮温资料质量控制方法[J]. 热带海洋学报, 36(2): 86-95.
|
[7] |
戚佩霓, 沈菲菲, 寇蕾蕾, 等, 2019. 多普勒雷达资料同化在台风“灿都”(2010)预报中的应用研究[J]. 热带海洋学报, 38(2): 20-31.
|
[8] |
沈菲菲, 闵锦忠, 许冬梅, 等, 2016. 双多普勒雷达资料同化在飓风“艾克”预报中的应用研究[J]. 海洋学报, 38(11): 60-72.
|
[9] |
沈菲菲, 许冬梅, 闵锦忠, 等, 2018. 云尺度雷达资料的混合同化对台风“桑美”的数值模拟研究[J]. 海洋学报, 40(5): 48-61.
|
[10] |
吴应昂, 2015. FY-3C卫星微波辐射资料同化应用研究[D]. 长沙: 国防科学技术大学:32-58.
|
[11] |
冼智鹏, 2019. FY-3C微波观测资料的全天候同化技术及其在台风预报中的应用[D]. 成都: 成都信息工程大学:22-35.
|
[12] |
肖贤俊, 何娜, 张祖强, 等, 2011. 卫星遥感海表温度资料和高度计资料的变分同化[J]. 热带海洋学报, 30(3): 1-8.
|
[13] |
许冬梅, 沈菲菲, 李泓, 等, 2022. 新一代静止气象卫星葵花8号的晴空红外辐射率资料同化对台风“天鸽”的预报影响研究[J]. 海洋学报, 44(3): 40-52.
|
[14] |
朱利剑, 2018. FY-3C微波湿度计资料在GRAPES-GFS模式中的同化应用[D]. 南京: 南京信息工程大学:14-20.
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
/
〈 | 〉 |