Journal of Tropical Oceanography >
Effect of typhoon on storm surge in the Pearl River Estuary
Copy editor: YAO Yantao
Received date: 2021-10-27
Revised date: 2022-03-15
Online published: 2022-03-03
Supported by
National Key Research and Development Program of China(2017YFC1405300)
National Natural Science Foundation of China(41890851)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0305)
Storm surge disasters occur frequently along the Pearl River Estuary and are significantly affected by typhoon. This study analyzed the extreme surge at the Chiwan Station in the Pearl River Estuary during the past 30 years (1990-2019). The results show that the average annual storm surge in this region has not changed significantly recent years, but the extreme storm surge (99.9 quantile) has increased greatly (1.62 cm·a-1), which means that the extreme storm surge disasters have continued to increase. In the past 30 years, the annual maximum storm surge in 20 years occurred during typhoons (accounting for 66.7%). In 2018, the maximum storm surge caused by super typhoon “mangkhut” reached 254 cm, which was the largest storm surge disaster in the past 30 years. The maximum response distance of storm surge to typhoon is about 500~800 km. Within the influence range of typhoon, the storm surge has an approximate linear relationship with typhoon intensity, and an exponential relationship with the distance from typhoon center. Different indexes of typhoon intensity (minimum pressure, maximum wind speed and maximum wind speed radius of typhoon center) were used to fit the storm surge with the distance from the observation station to the typhoon center, and it was found that the combination of wind speed and distance had the best description effect on storm surge (Sw=3.23e-0.0036D×Γw-3.90)+4.48, R2=0.78, RMSE=9.69 cm). These results can improve the understanding of local storm surge disaster, provide validation data for typhoon storm surge simulation and reference for storm surge disaster risk assessment and response decision.
Key words: typhoon; storm surge; Pear River Estuary
GAO Na , ZHAO Mingli , MA Yi , XU Wanming , ZHAN Haigang , CAI Shuqun . Effect of typhoon on storm surge in the Pearl River Estuary[J]. Journal of Tropical Oceanography, 2023 , 42(1) : 32 -42 . DOI: 10.11978/2021145
图1 1990—2019年进入南海北部的热带气旋累积观测频次与路径(a)和各月份达到台风强度及以上的热带气旋数量(b)观测频次的计算是将经纬度以1°为单元进行划分, 计算每个单元网格内的热带气旋数量。图b中黑色部分是影响赤湾站的台风数量。图a基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)1665的标准地图制作, 底图无修改 Fig. 1 Observed frequency of all typhoons entered into the north South China Sea (colors) and the trajectories of all typhoons that may threat the Chiwan station (gray line) (a). Number of tropical cyclones entered into the north South China Sea and reached typhoon intensity or above every month from 1990 to 2019, of which the black part is the number of typhoons affecting the Chiwan station (b). The observation frequency was calculated by dividing the latitude and longitude by 1°, and calculating the number of tropical cyclones in each cell grid |
图3 2018年9月台风“山竹”的路径与强度(a)、台风中心最低气压(b)、最大风速(c)、最大风速半径(d)、台风中心与赤湾站间距离(e), 以及赤湾站观测到的水位变化(f)图a基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)1665的标准地图制作, 底图无修改 Fig. 3 Trajectories and intensity of Typhoon Mangkhut in September 2018 (a), The minimum pressure in the center of the typhoon (b), maximum wind speed (c), radius of maximum wind speed (d), distance between the center of typhoon and the Chiwan Station (e), the water level changes observed at the Chiwan Station (f) |
图4 三类台风的路径(a、d、g)、引起赤湾站增水的强度(b、e、h), 以及赤湾站增水强度与其距台风中心距离间的散点图(c、f、i)图a、d、g中填色为每次台风采样时刻观测到的台风最大风速, 图b、e、h中填色为对应时刻赤湾站实测的增水强度。该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)1665的标准地图制作, 底图无修改 Fig. 4 The trajectories (a, d, g) of the three types of typhoons, the intensification of storm surge at the Chiwan Station (b, e, h), and the scatter plot between the intensification of storm surge at the Chiwan Station and its distance from the center of the typhoon (c, f, i). The colors in Figure a, d and g are the maximum typhoon wind speed observed at the sampling time of each typhoon, and the colors in (b), (e) and (h) are the measured storm surge intensity at the Chiwan Station at the corresponding time |
图6 台风中心与赤湾站距离为0~500km(a—c)、500~1000km(d—f)、1000~1500km(g—i)以及大于2000km(j—l)时的增水与台风强度关系图第一列图(a、d、g、f)为增水与台风中心最低气压的关系, 第二列图(b、e、h、k)为增水与最大风速的关系, 第三列图(c、f、i、l)为增水与最大风速半径的关系; 图a—c中的红色实线为线性拟合结果 Fig. 6 The relationship between storm surge and typhoon intensity when the distance between typhoon center and the Chiwan station is 0~500 km (a~c), 500~1000 km (d~f), 1000~1500 km (g~i) and greater than 2000 km (j~l). The first column shows the relationship between storm surge and the minimum pressure in the center of the typhoon, the second column shows the relationship between storm surge and the maximum wind speed, and the third column shows the relationship between storm surge and the radius of the maximum wind speed. The solid red lines in (a~c) show the linear fitting results |
图7 实际增水(a、d、g)和考虑台风强度(最大风速、最大风速半径和中心最低气压)与距台风中心距离的经验模型拟合增水(b、e、h)以及两者的对比(e、f、i)图c、f、i中的红色实线为模拟增水与真实增水的线性拟合关系 Fig. 7 Actual storm surge (a, d, g), empirical model fitting storm surge (b, e, h) and their comparison (e, f, i) by considering typhoon intensity (maximum wind speed, maximum wind speed radius and central minimum pressure) and distance from typhoon center |
[1] |
陈波, 邱绍芳, 2000. 广西沿海港湾风暴潮增减水与台风路径和地形效应的关系[J]. 广西科学, 7(4): 282-285.
|
[2] |
陈波, 董德信, 陈宪云, 等, 2017. 南海北部台风引起的广西近岸增减水研究[J]. 海洋湖沼通报, (2): 1-11.
|
[3] |
董剑希, 李涛, 侯京明, 等, 2014. 广东省风暴潮时空分布特征及重点城市风暴潮风险研究[J]. 海洋学报, 36(3): 83-93.
|
[4] |
广东省海洋与渔业厅, (2017-03-22). 广东省海洋灾害公报2016[EB/OL]. http://nr.gd.gov.cn/zwgknew/tzgg/gg/content/post_3186916.html. in Chinese)
|
[5] |
广东省海洋与渔业厅, (2018-04-23). 广东省海洋灾害公报2017[EB/OL]. http://nr.gd.gov.cn/zwgknew/sjfb/tjsj/content/post_3186924.html. in Chinese)
|
[6] |
郭洪寿, 1991. 我国潮灾灾度评估初探[J]. 南京大学学报, (5): 18-22. (in Chinese)
|
[7] |
韩晶, 2019. 台风山竹和天鸽对珠海沿海风暴潮增水影响[J]. 吉林水利, (8): 47-49, 53.
|
[8] |
韩树宗, 潘嵩, 2013. 杭州湾台风风暴潮增水过程的数值分析[J]. 中国海洋大学学报, 43(7): 1-6.
|
[9] |
黄世昌, 李玉成, 赵鑫, 等, 2008. 浙江沿海超强台风作用下风暴潮增水数值分析[J]. 海洋工程, 26(3): 58-64.
|
[10] |
梁连松, 张钊, 顾冬明, 等, 2020. 典型路径下台风移速调整对鳌江站增水的数值分析[J]. 海洋预报, 37(5): 59-66.
|
[11] |
刘秋兴, 傅赐福, 李明杰, 等, 2018. “天鸽”台风风暴潮预报及数值研究[J]. 海洋预报, 35(1): 29-36.
|
[12] |
刘士诚, 陈永平, 谭亚, 等, 2021. 珠江河网1822号台风“山竹”期间风暴增水模拟及特性分析[J]. 海洋预报, 38(2): 12-20.
|
[13] |
牛海燕, 刘敏, 陆敏, 等, 2011. 中国沿海地区台风致灾因子危险性评估[J]. 华东师范大学学报(自然科学版), (6): 20-25, 35.
|
[14] |
潘明婕, 孔俊, 杨芳, 等, 2019. 台风路径对磨刀门水道咸潮上溯动力过程的影响机制[J]. 热带海洋学报, 38(3): 53-67.
|
[15] |
王康发生, 尹占娥, 殷杰, 2011. 海平面上升背景下中国沿海台风风暴潮脆弱性分析[J]. 热带海洋学报, 30(6): 31-36.
|
[16] |
王敏, 尹义星, 陈晓旸, 等, 2020. 异常北折台风“洛坦”与异常西折台风“奥玛”路径的对比及预报[J]. 热带海洋学报, 39(1): 53-65.
|
[17] |
王培涛, 于福江, 刘秋兴, 等, 2010. 福建沿海精细化台风风暴潮集合数值预报技术研究及应用[J]. 海洋预报, 27(5): 7-15.
|
[18] |
魏晓宇, 刘雪峰, 2010. 闸坡站风暴潮增水与热带气旋登陆点及路径的关系[J]. 台湾海峡, 29(1): 122-127.
|
[19] |
吴海军, 相海波, 谢巨伦, 2012. 永暑礁风暴潮增水极值预报初探[J]. 科技信息, (9): 41-42.
|
[20] |
谢亚力, 黄世昌, 王瑞锋, 等, 2007. 钱塘江河口围涂对杭州湾风暴潮影响数值模拟[J]. 海洋工程, 25(3): 61-67.
|
[21] |
杨玄阁, 朱良生, 2017. 琼州海峡台风风暴潮增水过程的数值分析[J]. 人民珠江, 38(1): 43-47.
|
[22] |
尹宝树, 王涛, 侯一筠, 等, 2001. 渤海波浪和潮汐风暴潮相互作用对波浪影响的数值研究[J]. 海洋与湖沼, 32(1): 109-116.
|
[23] |
殷成团, 张金善, 熊梦婕, 等, 2019. 我国南海沿海台风及暴潮灾害趋势分析[J]. 热带海洋学报, 38(1): 35-42.
|
[24] |
尹尽勇, 徐晶, 曹越男, 等, 2012. 我国海洋气象预报业务现状与发展[J]. 气象科技进展, 2(6): 17-26.
|
[25] |
于福江, 董剑希, 叶琳, 2015. 中国风暴潮灾害史料集: 1949-2009[M]. 北京: 海洋出版社.
|
[26] |
张敏, 罗军, 胡金磊, 等, 2019. 雷州市沿海风暴潮淹没危险性评估[J]. 热带海洋学报, 38(2): 1-12.
|
[27] |
自然资源部, 海洋预警监测司, (2019-04-28). 中国海洋灾害公报2018[EB/OL]. http://gi.mnr.gov.cn/201905/t20190510_2411197.html.
Natural Resources Ministry, Marine Early Warning and Monitoring Division, (2019-04-28). Bulletin of China marine disaster 2018[EB/OL]. http://gi.mnr.gov.cn/201905/t20190510_2411197.html.
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
/
〈 | 〉 |