Exploitation of Marine Resources

Study on the secondary metabolites of fungus Penicillium sp. SCSIO 40438 from the South China Sea

  • ZHU Yiguang , 1, 2, 3 ,
  • MOU Pengyun , 1, 4 ,
  • ZHANG Qingbo 1, 2, 3 ,
  • ZHANG Changsheng 1, 2, 3
Expand
  • 1. Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
  • 4. College of Life Science and Technology, Tarim University, Alar 843300, China
ZHU Yiguang, email: ;
MOU Pengyun, email:

Copy editor: YAO Yantao

Received date: 2022-04-14

  Revised date: 2022-05-08

  Online published: 2022-05-10

Supported by

Guangdong MEPP Funds(GDNRC[2021]48)

K.C.Wong Education Foundation(GJTD-2020-12)

Key Area Research and Development Program of Guangdong Province(2020B1111030005)

Special Support Program for Training High Level Talents in Guangdong(2019TQ05H299)

Abstract

This experiment aims to study the secondary metabolites of fungus Penicillium sp. SCSIO 40438 from the South China Sea. The solid fermentation products of the strain were isolated and purified by a variety of separation methods, including silica gel column, Sephadex LH-20 gel column, and preparative high performance liquid chromatography. The structures of the isolated compounds were identified by nuclear magnetic resonance, high resolution electrospray ionization mass spectroscopy and comparison with the previously reported data. Nine compounds were obtained and identified as 1-(2-Methylbut-3-en-2-yl)-1H-indole-3-carbaldehyde (1), 1-methyl-2(1H)-quinazolinone (2), fructigenine A (3), fructigenine B (4), 2-[(s)-hydroxy(phenyl)methyl]-3-methylquinazolin-4(3H)-one (5), 3-Methylviridicatin (6), 3-O-methylviridicatol (7), viridicatol (8), (+)-cyclopenol (9), and compounds 1 and 2 are two new natural products. Compound 8showed moderate antibacterial activities against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus with minimal inhibition concentration (MIC) values of 8.0 μg·mL-1.

Keywords fungi; Penicillium sp.; secondary metabolites; antibacterial activity

Cite this article

ZHU Yiguang , MOU Pengyun , ZHANG Qingbo , ZHANG Changsheng . Study on the secondary metabolites of fungus Penicillium sp. SCSIO 40438 from the South China Sea[J]. Journal of Tropical Oceanography, 2023 , 42(1) : 161 -167 . DOI: 10.11978/2022079

近年来随着临床上抗生素的滥用, 病原微生物的耐药性已严重威胁到人类的健康, 因此寻找结构新颖、活性显著的抗生素迫在眉睫(尚卓 等, 2012)。海洋高压、高盐、黑暗、寡营养等特殊的环境, 孕育出海洋生物独特的代谢途径, 是具有良好生物活性代谢产物的重要来源。自2008年以来, 每年新发现的海洋天然产物数量均超过1000个(朱伟明, 2019), 在2017年和2018年分别大幅增长至1490和1554个(Carroll et al, 2020)。海洋真菌作为海洋微生物的重要组成部分, 由于其次级代谢产物的多样性而受到国内外天然产物研究人员的关注(朱伟明 等, 2011; Blunt et al, 2017)。例如, Meng等(2015)从海洋红树林来源真菌Penicillium brocae MA-231中分离得到5个新化合物penicibrocazines A—E, 其中penicibrocazine C对金黄色葡萄球菌活性具有良好的抑制作用, 最小抑菌浓度(Minimal inhibition concentration, MIC)值为0.25µg·mL-1; Luo等(2014)从海洋来源真菌Penicillium sp. MA-37中分离得到一个新的苯甲酮iso-monodictyphenone, 该化合物对嗜水气单胞菌具有抑制作用, MIC值为8µg·mL-1, 略高于阳性对照氯霉素(4µg·mL-1); Meng等(2014)从真菌P. bilaiae MA-267中分离到两个新颖的倍半萜penicibilaenes A和B, 它们都对植物病原菌胶孢炭疽菌的活性显示出良好的抑制作用, MIC值分别为1和0.125µg·mL-1
为进一步挖掘海洋真菌次级代谢产物的多样性, 寻找具有良好抑菌活性的药物先导化合物, 本文对分离自南海沉积物的真菌Penicillium sp. SCSIO 40438进行了次级代谢产物研究, 从固体发酵粗提物中共分离得到9个化合物(图1), 其中化合物12为新天然产物。通过测定比旋光度和圆二色谱(circular dichroism, CD)数据(图2), 并与已报道的文献比较, 进一步确定了化合物359的立体构型, 其中化合物5为一对对映异构体。抑菌活性实验表明, 化合物8具有中等强度的抑制金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌的活性。
图1 化合物19的结构

Fig. 1 The chemical structures of compounds 1~9

图2 化合物3、4、59的CD光谱

Fig. 2 The CD spectrum of compounds 3, 4, 5

1 材料与方法

1.1 仪器与试剂

主要仪器包括高效液相色谱仪(日本Hitachi公司)、制备型高效液相色谱仪(美国Agilent公司)、高效液相色谱柱(美国Phenomenex公司, Luna, C18, 150×4.6mm, 5μm)、制备型高效液相色谱柱(美国Phenomenex公司, Luna, C18, 250×10mm, 5μm)、核磁共振仪(德国Bruker公司)、高分辨质谱仪(德国Bruker公司)、超净工作台(新加坡ESCO公司)、微量移液器(法国Gilson公司)、旋转蒸发仪(德国Hidolph公司)、高压蒸汽灭菌锅(合肥华泰医疗设备有限公司)、超声波清洗机(宁波新芝生物科技股份有限公司)。主要试剂包括200~300目正向硅胶(青岛海洋化工有限公司)、薄层色谱硅胶(青岛海洋化工有限公司)、色谱级乙腈(美国Sigma公司)及分析纯级化学试剂(广州化学试剂厂)等。

1.2 菌株发酵培养

菌株Penicillium sp. SCSIO 40438分离自中国南海沉积物, 样品采集时间为2019年7月, 保存于中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室, 菌株编号为SCSIO 40438。将-80℃保藏的菌株接种于PDA培养基(马铃薯200g, 葡萄糖20g, 海盐30g, 琼脂20g, 蒸馏水1000mL, pH7.2)上, 28℃倒置培养7d。用棉签刮取孢子, 均匀地涂布于Peter培养基 (葡萄糖20g, 酵母提取粉3g, 麦芽提取物3g, 蛋白胨5g, 海盐30g, 琼脂20g, 蒸馏水1000mL, pH7.2)上, 室温下倒置培养60d, 共发酵10L。

1.3 提取与分离

菌株固体平板发酵物破碎后用丙酮浸泡过夜, 重复3次。提取液经减压浓缩除去丙酮, 再用两倍体积乙酸乙酯萃取3次, 减压浓缩至干, 得到粗提物8.41g。粗提物用200~300目硅胶拌样后进行硅胶柱层析分离, 流动相用环己烷/乙酸乙酯(体积比分别为6:1、2:1、1:1、1:2、0:1)进行梯度洗脱, 得到5个馏分(Fr.1—Fr.5)。馏分Fr.2经Sephadex LH-20凝胶分离, 氯仿/甲醇(体积比为1:1)等度洗脱, 根据TLC检测结果合并馏分, 得到3个馏分(Fr.2.1—Fr.2.3)。Fr.2.2经半制备高效液相色谱(乙腈/水, 体积比为70:30; 流速: 2.5mL·min-1; 检测波长: 254nm)纯化得到化合物1 (2.1mg, tR=11.0min)和化合物5 (4.9mg, tR=14.3min)。馏分Fr.3经半制备高效液相色谱(乙腈/水, 体积比为58:42; 流速: 2.5mL·min-1; 检测波长: 254nm)纯化得到化合物4 (7.0mg, tR=13.5min)。馏分Fr.4经Sephadex LH-20凝胶分离, 氯仿/甲醇(体积比为1:1)等度洗脱, 根据TLC检测结果合并馏分, 得到3个馏分(Fr.4.1—Fr.4.3)。Fr.4.1经半制备高效液相色谱(乙腈/水, 体积比为55:45; 流速: 2.5mL·min-1; 检测波长: 254nm)纯化得到化合物3 (25.1mg, tR=12.0min); Fr.4.2经半制备高效液相色谱(乙腈/水, 体积比为65:35; 流速: 2.5mL·min-1; 检测波长: 254nm)纯化得到化合物2 (8.8mg, tR=10.6min)、化合物6 (1.8mg, tR=13.5min)、化合物7 (2.4mg, tR=16.7min)和化合物9 (47.1mg, tR=18.0min); Fr.4.3经半制备高效液相色谱(乙腈/水, 体积比为50:50; 流速: 2.5mL·min-1; 检测波长: 254nm)纯化得到化合物8 (12.4mg, tR=12.4min)。

1.4 化合物抑菌活性测试

指示菌包括3株革兰氏阴性菌: 大肠杆菌(Escherichia coli ATCC 25922)、鲍曼不动杆菌(Acinetobacter baumannii ATCC 19606)和绿脓杆菌(Pseudomonas aeruginosa ATCC 2785); 3株革兰氏阳性菌: 金黄色葡萄球菌(Staphyloccocus aureus ATCC 29213)、耐甲氧西林的金黄色葡萄球菌[Methicillin-resistant S. aureus (MRSA) ATCC 43300]和藤黄微球菌(Micrococcus luteus SCSIO ML01)。采用微量肉汤稀释法(Ruan et al, 2021)测定化合物19的最低抑菌浓度(MIC), 具体步骤如下: 将化合物溶解于二甲基亚砜(Dimethyl sulfoxide, DMSO)中配成终浓度为1.28mg·mL-1的母液, -20°C保藏备用。96孔板每列加入水解酪蛋白肉汤(Mueller Hinton, MH)液体培养基, 加入量分别为: 第1列200μL, 第2列100μL, 第3列90μL, 第4列190μL, 剩余每列100μL。然后在第3列和第4列分别加入待测样品母液10μL, 混合均匀后从第4列吸取100μL液体到第5列, 依次往下做等倍稀释, 最后1列弃去100μL。DMSO作为阴性对照, 万古霉素和环丙沙星作为阳性对照。用无菌的MH液体培养基将培养好的指示菌稀释1000倍, 除第1列外每孔加入100μL, 使化合物的终浓度分别为64.0、32.0、16.0、8.0、4.0、2.0、1.0、0.5、0.25和0.125μg·mL-1。以上实验每组做3个平行, 37℃培养, 16h后观察菌液生长情况, 按照临床实验室标准化协会(Clinical and Laboratory Standards Institute, CLSI)中“甲氧苄胺嘧啶或磺胺药物的肉汤稀释法”的终点判断法, 与阳性生长对照管比较, 受试菌抑制率达80%以上药物浓度为其MIC。

2 结构鉴定

2.1 化合物1

无色油状, HRESIMS m/z 214.1253 [M + H]+, 1H-NMR (700 MHz, CD3OD) δ: 9.88 (1H, s, H-10), 8.31 (1H, s, H-2), 8.20 (1H, m, H-4), 7.62 (1H, m, H-7), 7.24 (2H, m, H-5, 6), 6.20 (1H, dd, J = 17.5, 10.5 Hz, H-14), 5.30 (1H, d, J = 10.5 Hz, Ha-15), 5.20 (1H, d, J = 17.5 Hz, Hb-15), 1.85 (6H, s, H-12, 13); 13C-NMR (175 MHz, CD3OD) δ: 187.3 (C-10), 144.2 (C-14), 140.5 (C-2), 138.3 (C-8), 127.9 (C-9), 124.4 (C-6), 123.8 (C-5), 122.9 (C-4), 118.8 (C-3), 116.3 (C-7), 115.4 (C-15), 62.2 (C-11), 28.3 (C-12, 13)。上述波谱数据与文献(Johnson et al, 2013)报道一致, 故将化合物1鉴定为1-(2-Methylbut-3-en-2-yl)-1H-indole-3-carbaldehyde。

2.2 化合物2

白色粉末, HRESIMS m/z 161.0710 [M + H]+, 1H-NMR (700 MHz, DMSO-d6) δ: 8.37 (1H, s, H-4), 8.15 (1H, d, J = 7.7 Hz, H-5), 7.82, (1H, m, H-7), 7.67 (1H, d, J = 8.4 Hz, H-8), 7.54 (1H, m, H-6), 3.50 (3H, s, H-11); 13C-NMR (175 MHz, DMSO-d6) δ: 160.7 (C-2), 148.5 (C-4), 148.1 (C-9), 134.1 (C-7), 127.1 (C-6), 126.9 (C-5), 125.9 (C-8), 121.4 (C-10), 33.5 (C-11)。上述波谱数据与文献(Burov et al, 2013)报道一致, 故将化合物2鉴定为1-methyl-2(1H)-quinazolinone。

2.3 化合物3

淡黄色油状, [α] D 25 -136.5 (c 0.1, MeOH), HRESIMS m/z 444.2296 [M + H]+, 1H-NMR (700 MHz, DMSO-d6) δ: 8.22 (1H, s, H-15), 7.83 (1H, d, J = 7.7 Hz, H-7), 7.38 (1H, d, J = 7.7 Hz, H-4), 7.29 (2H, m, H-20, 22), 7.26 (1H, dd, J = 8.4, 1.4 Hz, H-21), 7.23 (3H, m, H-6, 19, 23), 7.12 (1H, td, J = 7.7, 0.7 Hz, H-5), 5.92 (1H, s, H-2), 5.63 (1H, dd, J = 16.8, 10.5 Hz, H-29), 5.04 (2H, m, H-30), 4.44 (1H, t, J = 4.2 Hz, H-11), 3.56 (1H, m, H-14), 3.12 (1H, dd, J = 14.0, 4.2 Hz, Ha-10), 3.01 (1H, dd, J=14.0, 4.9 Hz, Hb-10), 2.55 (3H, s, H-25), 2.32 (1H, dd, J = 12.6, 5.6 Hz, Ha-17), 1.61 (1H, t, J = 11.9 Hz, Hb-17), 0.94 (3H, s, H-27), 0.79 (3H, s, H-28); 13C-NMR (175 MHz, DMSO-d6) δ: 169.5 (C-24), 166.6 (C-16), 165.2 (C-13), 143.4 (C-29), 143.2 (C-8), 136.6 (C-18), 132.5 (C-9), 130.0 (C-20, 22), 128.5 (C-6), 128.1 (C-19, 23), 126.5 (C-21), 124.9 (C-4), 124.1 (C-5), 117.7 (C-7), 114.1 (C-30), 78.6 (C-2), 60.6 (C-3), 58.5 (C-11), 55.5 (C-14), 40.0 (C-26), 36.3 (C-17), 36.0 (C-10), 23.7 (C-25), 22.9 (C-27), 22.1 (C-28)。上述比旋光度、波谱和CD数据(图2a)与文献(Arai et al, 1989)报道一致, 故鉴定化合物3为fructigenine A。

2.4 化合物4

淡黄色油状, [α] D 25 -121.2 (c 0.1, MeOH), HRESIMS m/z 410.2455 [M + H]+, 1H-NMR (700 MHz, DMSO-d6) δ: 8.09 (1H, s, H-15), 7.83 (1H, d, J = 7.0 Hz, H-7), 7.45 (1H, d, J = 7.7 Hz, H-4), 7.29 (1H, td, J = 7.7, 0.7 Hz, H-6), 7.16 (1H, td, J = 7.7, 0.7 Hz, H-5), 5.96 (1H, s, H-2), 5.85 (1H, dd, J = 16.8, 10.5 Hz, H-26), 5.08 (1H, d, J = 17.5 Hz, Ha-27), 5.05 (1H, dd, J = 11.2, 1.4 Hz, Hb-27), 4.02 (1H, td, J = 5.6 Hz, H-11), 3.78 (1H, dd, J = 11.2, 5.6 Hz, H-14), 2.54 (3H, s, H-22), 2.52 (1H, t, J = 7.0 Hz, Ha-10), 2.25 (1H, t, J = 11.9 Hz, Hb-10), 1.81 (1H, m, Ha-17), 1.73 (1H, m, H-18), 1.37 (1H, m, Hb-17), 1.07 (3H, s, H-24), 0.87 (3H, s, H-25), 0.84 (3H, d, J = 7.7 Hz, H-19), 0.81 (3H, d, J = 6.3 Hz, H-20); 13C-NMR (175 MHz, DMSO-d6) δ: 169.5 (C-21), 168.9 (C-16), 167.2 (C-13), 143.7 (C-26), 142.9 (C-8), 132.8 (C-9), 128.5 (C-6), 125.0 (C-4), 124.1 (C-5), 118.2 (C-7), 114.1 (C-27), 78.9 (C-2), 60.4 (C-3), 58.6 (C-11), 52.5 (C-14), 40.1 (C-23), 38.2 (C-17), 34.6 (C-10), 23.9 (C-18), 23.7 (C-22), 23.0 (C-19), 22.9 (C-24), 21.9 (C-25), 21.8 (C-20)。上述比旋光度、波谱和CD数据(图2a)与文献(Arai et al, 1989)报道一致, 故将化合物4鉴定为fructigenine B。

2.5 化合物5

淡黄色油状, [α] D 25 +0.9 (c 0.1, MeOH), HRESIMS m/z 267.1127 [M + H]+, 1H-NMR (700 MHz, DMSO-d6) δ: 8.14 (1H, dd, J = 7.7, 1.4 Hz, H-6), 7.85 (1H, m, H-8), 7.72 (1H, d, J = 8.4 Hz, H-9), 7.56 (1H, m, H-7), 7.40 (2H, m, H-14, 16), 7.38 (2H, m, H-13, 17), 7.31 (1H, m, H-15), 5.95 (1H, s, H-11), 1.23 (3H, s, H-18); 13C-NMR (175 MHz, DMSO-d6) δ: 161.9 (C-4), 157.1 (C-2), 146.3 (C-10), 139.9 (C-12), 134.5 (C-8), 128.5 (C-14, 16), 127.7 (C-15), 127.2 (C-7), 127.1 (C-6), 126.2 (C-9), 126.0 (C-13, 17), 120.0 (C-5), 74.2 (C-11), 30.2 (C-18)。上述波谱数据与文献(Yang et al, 2016)报道一致, 故将化合物5鉴定为2-[(s)-hydroxy(phenyl)methyl]-3-methylquinazolin-4(3H)-one。鉴于化合物5的比旋光度趋近于零, 且无明显的CD数值(图2b), 所以推定化合物5为一对对映异构体。

2.6 化合物6

灰色粉末, HRESIMS m/z 252.1018 [M + H]+, 1H-NMR (700 MHz, DMSO-d6) δ: 12.10 (1H, s, H-1), 7.53 (2H, m, H-13, 15), 7.48 (1H, m, H-14), 7.42 (1H, m, H-7), 7.37 (1H, dd, J = 7.7, 0.7 Hz, H-8), 7.33 (2H, overlap, H-12, 16), 7.09(1H, m, H-6), 6.98 (1H, dd, J = 7.7, 0.7 Hz, H-5), 3.69 (3H, s, H-17); 13C-NMR (175 MHz, DMSO-d6) δ: 158.5 (C-2), 145.1 (C-3), 137.5 (C-4), 135.8 (C-9), 133.5 (C-11), 129.2 (C-12, 16), 128.6 (C-7), 128.4 (C-13, 15), 128.1 (C-14), 125.7 (C-5), 122.0 (C-6), 119.7 (C-10), 115.1 (C-8), 59.5 (C-17)。上述波谱数据与文献(Luckner, 1967)报道一致, 故将化合物6鉴定为3-Methylviridicatin。

2.7 化合物7

灰色粉末, HRESIMS m/z 268.0978 [M + H]+, 1H-NMR (700 MHz, DMSO-d6) δ: 12.07 (1H, s, H-1), 9.64 (1H, s, 13-OH), 7.41 (1H, t, J = 7.7 Hz, H-7), 7.35 (1H, d, J = 8.4 Hz, H-8), 731 (1H, t, J = 8.4 Hz, H-15), 7.08 (1H, t, J = 7.7 Hz, H-6), 7.03 (1H, d, J = 7.7 Hz, H-5), 6.85 (1H, dd, J = 8.4, 2.1 Hz, H-14), 6.71 (1H, d, J = 7.0 Hz, H-16), 6.68 (1H, s, H-12), 3.69 (3H, s, H-17); 13C-NMR (175 MHz, DMSO-d6) δ: 158.5 (C-2), 157.3 (C-13), 144.9 (C-3), 137.6 (C-4), 135.7 (C-9), 134.7 (C-11), 129.5 (C-15), 128.6 (C-7), 125.8 (C-5), 121.9 (C-6), 119.9 (C-10), 119.7 (C-16), 116.0 (C-12), 115.1 (C-8), 115.0 (C-14), 59.5 (C-17)。上述波谱数据与文献(Wang et al, 2016)报道一致, 故将化合物7鉴定为3-O-methylviridicatol。

2.8 化合物8

灰色粉末, HRESIMS m/z 254.0822 [M + H]+, 1H-NMR (700 MHz, DMSO-d6) δ: 12.20 (1H, s, H-1), 9.53 (1H, s, 13-OH), 9.15 (1H, s, 3-OH ), 7.33 (1H, m, H-8), 7.31 (1H, m, H-5), 7.29 (1H, t, J = 7.7 Hz, H-15), 7.10 (1H, d, J = 8.4 Hz, H-7), 7.08 (1H, td, J = 6.3, 1.4 Hz, H-6), 6.82 (1H, dd, J = 8.4, 2.8 Hz, H-14), 6.72 (1H, m, H-16), 6.71 (1H, m, H-12); 13C-NMR (175 MHz, DMSO-d6) δ: 158.8 (C-2), 157.8 (C-13), 142.7 (C-9), 135.4 (C-11), 133.6 (C-4), 129.8 (C-15), 126.9 (C-5), 124.9 (C-7), 124.5 (C-3), 122.6 (C-6), 121.4 (C-10), 120.8 (C-16), 117.1 (C-12), 115.7 (C-8), 115.1 (C-14)。上述波谱数据与文献(Shu et al, 2020)报道一致, 故将化合物8鉴定为viridicatol。

2.9 化合物9

白色粉末, [α] D 25 -202.0 (c 0.1, MeOH), HRESIMS m/z 333.0843 [M + Na]+, 1H-NMR (700 MHz, DMSO-d6) δ: 10.82, (1H, s, H-1), 9.45 (1H, s, 15-OH), 7.53 (1H, td, J = 8.4, 2.1 Hz, H-8), 7.15 (1H, d, J = 8.4 Hz, H-9), 7.10 (1H, td, J = 7.7, 1.4 Hz, H-7), 7.01 (1H, m, H-6), 6.97 (1H, t, J = 8.4 Hz, H-17), 6.66 (1H, d, J = 8.4 Hz, H-16), 6.11 (1H, s, H-14), 6.00 (1H, d, J = 0.7 Hz, H-18), 4.24 (1H, s, H-10), 3.06 (3H, s, H-19); 13C-NMR (175 MHz, DMSO-d6) δ: 166.0 (C-2), 165.4 (C-5), 156.9 (C-15), 135.1 (C-11), 132.4 (C-8, 13), 130.5 (C-6), 128.9 (C-17), 126.5 (C-12), 124.3 (C-7), 121.1 (C-9), 117.0 (C-18), 115.7 (C-16), 112.7 (C-14), 70.1 (C-3), 63.7 (C-10), 30.9 (C-19)。上述比旋光度、波谱和CD数据(图2c)与文献(Li et al, 2014) 报道一致, 故将化合物9鉴定为(+)-cyclopenol。

3 单体化合物体外抑菌活性

采用微量肉汤稀释法对分离的9个化合物进行抑菌活性的检测, 指示菌包括3株革兰氏阳性菌(M. luteus SCSIO ML01、S. aureus ATCC 29213和MRSA ATCC 43300)和3株革兰氏阴性菌(P. aeruginosa ATCC 27853、A. baumannii ATCC 19606和E. coli ATCC 25922)。检测结果显示, 化合物1M. luteus SCSIO ML01和MRSA ATCC 43300具有微弱的抑菌活性, MIC值为32μg·mL-1; 化合物8S. aureus ATCC 29213和MRSA S. aureus ATCC 43300具有中等强度的抑菌活性, MIC值均为8μg·mL-1(表1)。
表1 化合物1—9的抑菌活性测试结果

Tab. 1 The antibacterial activities of compounds 1~9

化合物 M. Luteus
SCSIO ML01
S. Aureus
ATCC 29213
MRSA
ATCC 43300
P. aeruginosa
ATCC 27853
A. baumannii
ATCC 19606
E.coli
ATCC 25922
1 32.0 >64.0 32.0 >64.0 >64.0 >64.0
2 >64.0 >64.0 >64.0 >64.0 >64.0 >64.0
3 >64.0 >64.0 >64.0 >64.0 >64.0 >64.0
4 >64.0 >64.0 >64.0 >64.0 >64.0 >64.0
5 >64.0 >64.0 >64.0 >64.0 >64.0 >64.0
6 >64.0 >64.0 >64.0 >64.0 >64.0 >64.0
7 >64.0 >64.0 >64.0 >64.0 >64.0 >64.0
8 >64.0 8.0 8.0 >64.0 >64.0 >64.0
9 >64.0 >64.0 >64.0 >64.0 >64.0 >64.0
对照 0.5a 0.5a 0.5a 1.0b 1.0b 1.0b

注:a为万古霉素, b为环丙沙星

4 结果与讨论

海洋青霉属真菌在适应海洋环境过程中, 孕育出独特的代谢途径, 其代谢产物活性和结构类别都表现出与陆地青霉真菌有很大差异(余玥 等, 2011)。为寻找具有良好抑菌活性的药物先导化合物, 本研究采用固体平板发酵的方法从一株海洋来源青霉属真菌SCSIO 40438中分离得到9个化合物: 1-(2-Methylbut-3-en-2-yl)-1H-indole-3-carbaldehyde (1)、1-methyl-2(1H)-quinazolinone (2)、fructigenine A (3)、fructigenine B (4)、 2-[(s)-hydroxy(phenyl)methyl]-3-methylquinazolin-4(3H)-one (5)、3-Methylviridicatin (6)、3-O-methylviridicatol (7)、viridicatol (8)和(+)-cyclopenol (9)。其中, 化合物12作为新的天然产物, 首次从自然界中分离得到, 化合物5为首次从青霉属真菌中分离获得。
根据文献报道, 化合物1作为N-叔戊烯基吲哚类似物具有一系列药用潜力, 包括激活胰岛素受体、抗肿瘤、抗炎和抗菌等活性(Johnson et al, 2013)。化合物3在100μg·mL-1的浓度下对K562细胞的抑制率为60.8%(Chai et al, 2012)。化合物4对番茄病原真菌Fusarium oxysporum f. sp. Lycopersici具有一定的抗菌活性, MIC50值为50μg·mL-1(Bai et al, 2018)。化合物5对盐水褐虾具有微弱的毒性, LC50为98.7μg·mL-1(Yang et al, 2016)。Shu等(2020)通过建立卵清蛋白诱导的食物过敏小鼠模型, 发现化合物8可以通过降低特定免疫球蛋白E和肿瘤坏死因子-α等的水平来缓解过敏症状。化合物9表现出良好的抗炎活性(Wang et al, 2020)。本文的抑菌活性实验表明, 化合物18对3株革兰氏阳性菌M. luteus SCSIO ML01、S. aureus ATCC29213和MRSA ATCC 43300表现出不同的抑菌活性, 其中化合物1M. luteus SCSIO ML01和MRSA ATCC 43300具有微弱的抑菌活性, 化合物8S. aureus ATCC29213和MRSA ATCC 43300具有中等的抑菌活性, 故本文研究丰富了这些化合物的活性谱。此外, 研究结果表明南海来源青霉属真菌具有产生多种活性次生代谢产物的潜力, 值得进一步开发利用。
[1]
尚卓, 王斌贵, 2012. 海洋真菌来源的抗菌活性物质研究: 方法与进展[J]. 生命科学, 24(9): 997-1011.

SHANG ZHUO, WANG BINGUI, 2012. Methods and advances in studies on antimicrobial substances of marine-derived fungi[J]. Chinese Bulletin of Life Sciences, 24(9): 997-1011. (in Chinese with English abstract)

[2]
余玥, 林文翰, 2011. 海洋Penicillium属化学成分与生物活性的研究[J]. 哈尔滨商业大学学报(自然科学版), 27(4): 517-523, 527.

YU YUE, LIN WENHAN, 2011. Study on chemical composition and bioactivity of marine Penicillium genus[J]. Journal of Harbin University of Commerce (Natural Sciences Edition), 27(4): 517-523, 527. (in Chinese with English abstract)

[3]
朱伟明, 王俊锋, 2011. 海洋真菌生物活性物质研究之管见[J]. 菌物学报, 30(2): 218-228.

ZHU WEIMING, WANG JUNFENG, 2011. A review on studies of secondary metabolites from marine fungi[J]. Mycosystema, 30(2): 218-228. (in Chinese with English abstract)

[4]
朱伟明, 2019. 海洋天然产物的高效发现与成药性研究[J]. 中草药, 50(23): 5645-5652.

ZHU WEIMING, 2019. Efficient discovery and medicinal research of marine natural products[J]. Chinese Traditional and Herbal Drugs, 50(23): 5645-5652. (in Chinese with English abstract)

[5]
ARAI K, KIMURA K, MUSHIRODA T, et al, 1989. Structures of fructigenines A and B, new alkaloids isolated from Penicillium fructigenum Takeuchi[J]. Chemical & Pharmaceutical Bulletin, 37(11): 2937-2939.

[6]
BAI JING, ZHANG PENG, BAO GUANHU, et al, 2018. Imaging mass spectrometry-guided fast identification of antifungal secondary metabolites from Penicillium polonicum[J]. Applied Microbiology and Biotechnology, 102(19): 8493-8500.

DOI

[7]
BLUNT J W, COPP B R, KEYZERS R A, et al, 2017. Marine natural products[J]. Natural Product Reports, 34(3): 235-294.

DOI PMID

[8]
BUROV O N, KLETSKII M E, GULEVSKAYA A V. 2013. Quantum chemical studies of the oxidative alkylamination of diazinones[J]. Russian Chemical Bulletin, 62(5): 1156-1163.

DOI

[9]
CARROLL A R, COPP B R, DAVIS R A, et al, 2020. Marine natural products[J]. Natural Product Reports, 37(2): 175-223.

DOI PMID

[10]
CHAI YUNJING, CUI CHENGBIN, LI CHANGWEI, et al, 2012. Activation of the dormant secondary metabolite production by introducing gentamicin-resistance in a marine-derived Penicillium purpurogenum G59[J]. Marine Drugs, 10(3): 559-582.

DOI

[11]
JOHNSON K F, VAN ZEELAND R, STANLEY L M, 2013. Palladium-catalyzed synthesis of N-tert-prenylindoles[J]. Organic Letters, 15(11): 2798-2801.

DOI

[12]
LI JING, WANG JUN, JIANG CHENGSHI, et al, 2014. (+)-Cyclopenol, a new naturally occurring 7-membered 2, 5-dioxopiperazine alkaloid from the fungus Penicillium sclerotiorum endogenous with the Chinese mangrove Bruguiera gymnorrhiza[J]. Journal of Asian Natural Products Research, 16(5): 542-548.

DOI

[13]
LUCKNER M, 1967. Zur bildung von chinolinalkaloiden in pflanzen. 2. Die fermentative umwandlung der Penicillium-alkaloide cyclopenin und cyclopenol in viridicatin und viridicatol[J]. European Journal of Biochemistry, 2(1): 74-78.

DOI

[14]
LUO HAN, LI XIAOMING, LI CHUNSHUN, et al, 2014. Diphenyl ether and benzophenone derivatives from the marine mangrove-derived fungus Penicillium sp. MA-37[J]. Phytochemistry Letters, 9: 22-25.

DOI

[15]
MENG LINGHONG, LI XIAOMING, LIU YANG, et al, 2014. Penicibilaenes A and B, sesquiterpenes with a tricyclo[6. 3. 1. 01, 5]dodecane skeleton from the marine isolate of Penicillium bilaiae MA-267[J]. Organic Letters, 16(23): 6052-6055.

DOI

[16]
MENG LINGHONG, ZHANG PENG, LI XIAOMING, et al, 2015. Penicibrocazines A-E, five new sulfide diketopiperazines from the marine-derived endophytic fungus Penicillium brocae[J]. Marine Drugs, 13(1): 276-287.

DOI

[17]
RUAN XIANGCHUN, DENG XIAOLING, TAN MEILING, et al, 2021. In vitro antibiofilm activity of resveratrol against avian pathogenic Escherichia coli[J]. BMC Veterinary Research, 17(1): 249.

DOI

[18]
SHU ZHENDAN, LIU QINGMEI, XING CUIPING, et al, 2020. Viridicatol isolated from deep-sea Penicillium griseofulvum alleviates anaphylaxis and repairs the intestinal barrier in mice by suppressing mast cell activation[J]. Marine Drugs, 18(10): 517.

DOI

[19]
WANG JUNFENG, HE WEIJUN, HUANG XIAOLONG, et al, 2016. Antifungal new oxepine-containing alkaloids and xanthones from the deep-sea-derived fungus Aspergillus versicolor SCSIO 05879[J]. Journal of Agricultural and Food Chemistry, 64(14): 2910-2916.

DOI

[20]
WANG LIYAN, LI MENGJIE, LIN YINZHI, et al, 2020. Inhibition of cellular inflammatory mediator production and amelioration of learning deficit in flies by deep sea Aspergillus-derived cyclopenin[J]. The Journal of Antibiotics, 73(9): 622-629.

DOI

[21]
YANG HAIBIN, LI FANG, JI NAIYUN, 2016. Alkaloids from an algicolous strain of Talaromyces sp.[J]. Chinese Journal of Oceanology and Limnology, 34(2): 367-371.

DOI

Outlines

/