Journal of Tropical Oceanography >
Interannual variability of subsurface high salinity water in eastern equatorial Indian Ocean*
Copy editor: YAO Yantao
Received date: 2022-01-25
Revised date: 2022-07-05
Online published: 2022-07-21
Supported by
National Natural Science Foundation of China(42076020)
Strategic Priority Research Program of Chinese Academy of Sciences(XDA20060502)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0306)
Youth Innovation Promotion Association of Chinese Academy of Sciences(2020340)
Rising Star Foundation of South China Sea Institute of Oceanology, Chinese Academy of Sciences(NHXX2018WL0201)
Independent Research Project of State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences)(LTOZZ2101)
Based on the data of the comprehensive scientific cruise survey in eastern Indian Ocean from 2010 to 2019, Argo (array for real-time geostrophic oceanography) and SODA (simple ocean data assimilation), the interannual variability of subsurface high salinity water (SHSW) in eastern equatorial Indian Ocean was studied and its formation mechanisms was explored. The observation results limited to spring show that the high salinity water from Arabian Sea is distributed in 70~130m in eastern Indian Ocean equatorial section and exhibits significant interannual variations. And the result based on monthly SODA reveals that the trend of anomalous salinity of SHSW varies significantly in different periods, with a relatively stable trend from 2010 to 2015 and an obvious increasing trend from 2016 to 2019. Wind field and subsurface zonal current are dominant factors that control the interannual variability of the high salinity water by regression analysis of SHSW. Further analysis indicates that the anomalous easterly wind in equatorial Indian Ocean leads to the westward accumulation of water masses, then generates an eastward pressure gradient force, which in turn stimulates the anomalous subsurface eastward flow, and causes the increases of anomalous salinity of SHSW eventually. The dynamical connection is particularly remarkable in Indian Ocean Dipole, which further indicates that the interannual variability of SHSW is modulated by Indian Ocean Dipole.
TANG Jiaoyu , WANG Weiqiang , XU Kang , ZHANG Zhenqiu . Interannual variability of subsurface high salinity water in eastern equatorial Indian Ocean*[J]. Journal of Tropical Oceanography, 2023 , 42(1) : 10 -21 . DOI: 10.11978/2022014
图1 东印度洋航次期间赤道断面的CTD站位分布图a为水深图, 红色虚线表示赤道断面, 该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)1665号的标准地图制作; 图b为赤道断面CTD站位的时间-经度图, 每个红点表示1个CTD站位; 图c为观测时间分别在3、4、5月的CTD占比 Fig. 1 The location of CTD stations in equatorial section during eastern Indian Ocean cruises. (a) is the bathymetric chart, and the red line represents equator; (b) is time-longitude schematic diagram of CTD stations in equatorial section, and every red dot represents a CTD station; (c) is the proportion of CTD stations observed in March, April and May, respectively |
图5 东印度洋航次期间次表层高盐水的年际变化SODA和Argo均采用每年4月的数据; r表示CTD观测数据与其他数据的相关系数(通过95%显著性检验) Fig. 5 The interannual variability of subsurface high salinity water during eastern Indian Ocean cruises. Both SODA and Argo are in April each year. The letter r represents the correlation coefficient between observation and other datasets, which passed the t test at 95% confidence level |
图6 2010—2019年赤道断面气候态盐度分布粗黑线表示35.3‰的盐度等值线; 航次数据图中圆点区域表示CTD站位观测频率为1~3a, 网格线区域表示无数据, 其余区域表示站位观测频率在3a以上; SODA和Argo表示每年4月的气候态 Fig. 6 Climatic vertical salinity distribution in equatorial section from 2010 to 2019. The thick black line represents the salinity contour whose value is 35.3‰. In the cruise data panel, dots region indicates CTD observation time is 1-3 years, and grid line region means no observation, and the others mean observation time is more than 3 years. SODA and Argo represent the climate state in April each year |
图7 2010—2019年基于月平均数据的次表层高盐水距平(去除了季节变化)时间序列黑色粗虚线表示时间区间内的趋势线; r表示相关系数(通过95%显著性检验) Fig. 7 The time series of anomalous subsurface high salinity water with removing seasonal variations based on 2010-2019 monthly data. The thick black dashed line is the trend line of anomalous subsurface high salinity water within the time interval of 2010-2015 and 2016-2019, respectively. The letter r represents the correlation coefficient, which passed the t test at 95% confidence level |
图8 2010—2019年次表层高盐水距平与水平方向上次表层流距平(深度70~130m, 填色)、风应力距平(箭头)的回归(a), 以及与赤道垂向断面上纬向流距平(填色)的回归(b)图a基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)1665号的标准地图制作。绿点和加粗箭头区域通过了95%显著性检验; 紫色等值线为次表层高盐水距平与纬向风距平的回归 Fig. 8 Based on 2010-2019 monthly SODA, regression between subsurface high salinity water anomaly and horizontal subsurface current anomaly (70~130m, shaded), wind stress anomaly (arrows) (a), and equatorial zonal current anomaly (shaded) (b). Green dot and thick arrow area have passed the t test at 95% confidence level. The purple contour line is regression between subsurface high salinity water anomaly and zonal wind stress anomaly |
图9 2010—2019年次表层高盐水距平与海表面温度距平(填色)、风应力距平(箭头)的回归该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2016)1665号的标准地图制作。绿点和加粗箭头区域通过了95%显著性检验; 黑框和白框分别表示热带东南印度洋(90°E—110°E, 0°—10°S)、热带西印度洋(50°E—70°E, 10°N—10°S) Fig. 9 Regression between subsurface high salinity water anomaly and sea surface temperature anomaly (shaded), and wind stress anomaly (black arrow), based on 2010-2019 monthly SODA. Green dot and thick black arrow area have passed the t test at 95% confidence level. The black and white boxes are the southeastern tropical Indian Ocean (90°E—110°E, 0°—10°S) and the western tropical Indian Ocean (50°E—70°E, 10°N—10°S), respectively |
[1] |
李俊灵, 徐康, 王卫强, 等, 2022. 印度洋赤道潜流年际变化特征及其与印度洋偶极子的联系[J]. 海洋与湖沼, 53(1): 19-32.
|
[2] |
林小刚, 齐义泉, 程旭华, 2014. 3—5月份东印度洋上层水文要素特征分析[J]. 热带海洋学报, 33(3): 1-9.
|
[3] |
刘雨, 徐康, 王卫强, 等, 2021. 印度洋上层经向翻转环流的冬夏季节对比[J]. 海洋与湖沼, 52(5): 1104-1114.
|
[4] |
乔彬, 刘子洲, 张书颖, 等, 2014. 季风转换期东印度洋的赤道流系结构和水文特征[J]. 海洋科学进展, 32(3): 301-305.
|
[5] |
邢会斌, 陈昇, 徐康, 等, 2021. 季风转换期印度洋经向热输运的年际变异及其机理[J]. 海洋学报, 43(12): 26-37.
|
[6] |
宣莉莉, 邱云, 许金电, 等, 2015a. 基于Argo的热带东印度洋上层水团季节分布[J]. 解放军理工大学学报(自然科学版), 16(2): 188-194.
|
[7] |
宣莉莉, 邱云, 许金电, 等, 2015b. 孟加拉湾与赤道东印度洋水交换的季节变化特征[J]. 热带海洋学报, 34(6): 26-34.
|
[8] |
张玉红, 2010. 热带北印度洋和赤道海区东西水交换及其年际变化[D]. 南京: 南京信息工程大学: 1-80. (in Chinese)
|
[9] |
张玉红, 杜岩, 徐海明, 2012. 赤道印度洋中部断面东西水交换的季节变化及其区域差异[J]. 海洋学报, 34(2): 30-38.
|
[10] |
郑佳喻, 徐康, 陈更新, 等, 2018. 热带印度洋环流动力与季风相互作用研究进展[J]. 南京信息工程大学学报(自然科学版), 10(3): 275-281.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
/
〈 | 〉 |