Review

Recent research progress in the influence of tropical cyclones on the Luzon Strait transport*

  • YANG Lei , 1 ,
  • WEN Jinhui 2 ,
  • WANG Qiang 1 ,
  • LUO Xi 2 ,
  • HUANG Huaming 2 ,
  • HE Yunkai 1 ,
  • CHEN Ju 1
Expand
  • 1. State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences), Guangzhou 510301, China
  • 2. School of Marine Science, Sun Yat-sen University, Zhuhai 519082, China
YANG Lei. email:

Copy editor: LIN Qiang

Received date: 2022-07-04

  Revised date: 2022-08-15

  Online published: 2022-08-26

Supported by

National Natural Science Foundation of China(92158204)

Guangdong Basic and Applied Basic Research Foundation(2022A1515010945)

National Key R&D Program of China(2022YFE0203500)

Science and Technology Program of Guangdong Province(2022B1212050003)

Abstract

As the unique deep channel that connects the South China Sea (SCS) with the western Pacific Ocean, Luzon Strait is also the key oceanic passage that modulates the SCS circulation and its thermodynamic characteristics. Influenced by large-scale western boundary current, meso-scale eddies, tropical cyclones and other factors, Luzon Strait transport (LST) exhibits significant multi timescale variability. Tropical cyclones are strong and localized low-pressure weather systems that occur frequently in the area, therefore, understanding the dynamic connection between tropical cyclones and LST is one of the most essential topics in oceanography research. This study reviews the research progress in the characteristics of tropical cyclones near the Luzon Strait and its impact on the Kuroshio, ocean circulation and LST, and reveals their recent development. We further suggest that the future study should focus on the modulating mechanisms of the tropical cyclones on the LST and evaluate their contributions to the interannual variations of LST.

Cite this article

YANG Lei , WEN Jinhui , WANG Qiang , LUO Xi , HUANG Huaming , HE Yunkai , CHEN Ju . Recent research progress in the influence of tropical cyclones on the Luzon Strait transport*[J]. Journal of Tropical Oceanography, 2023 , 42(3) : 40 -51 . DOI: 10.11978/2022150

南海是西北太平洋最大的半封闭深水海盆, 四周通过多个海峡与周围邻近海域进行水体交换, 其中与太平洋相连的吕宋海峡被认为是太平洋海水入侵南海的主要通道(Chen et al, 2015; Qu et al, 2000)。黑潮携带高温高盐的太平洋水向北流经吕宋海峡时, 一部分黑潮水可能会进入南海, 引起西向的吕宋海峡输运(Chern et al, 1998; Fang et al, 1998; Liang et al, 2003; Yuan et al, 2008), 影响南海的温盐特征和环流结构, 尤其对南海东北部海域的动力和生态环境有重要的调控作用(Metzger et al, 1996; Li et al, 1998; Qu, 1999; Xu et al, 2000; Qu et al, 2004; Wu et al, 2007; Xiu et al, 2010; Nan et al, 2011; Wu 2013; 吴立新 等, 2013; 杨龙奇 等, 2014; Wang et al, 2021)。
受东亚季风影响, 黑潮入侵方式和路径及其引起的吕宋海峡输运呈现显著的季节变化。最大的西向吕宋海峡输运发生在冬季, 春季次之, 夏季最少(Shaw, 1991; 李薇 等, 1998; Qu et al, 2000; Centurioni et al, 2004; 刘长建 等, 2008; 沈辉 等, 2013)。一般认为东北季风引起的Ekman输送是引起西向吕宋海峡输运发生的主要原因(Wu et al, 2012), 而非东北季风盛行期间热带气旋等强烈的天气尺度事件伴随的东北风异常也能引起显著的西向吕宋海峡输运异常(Chen et al, 2010; Hsin et al, 2010; Kuo et al, 2011)。除了风场强迫, 海洋中频发的中尺度涡旋亦会影响吕宋海峡输运(Lu et al, 2013; 沈辉 等, 2013; Lien et al, 2014)。黑潮入侵南海的路径多变, 且不同路径之间会发生转换, 还可能受到很多其他原因影响, 例如吕宋海峡两侧海盆之间的压力差(Song, 2006)、Beta效应(Yuan et al, 2011)、位势涡度(Xue et al, 2004), 以及海气通量(Hsin et al, 2012)等。年际尺度上, 吕宋海峡输运的变化与厄尔尼诺-南方涛动(El Niño‒Southern oscillation, ENSO)信号有很强的正相关。研究表明厄尔尼诺(拉尼娜)年期间北赤道流分叉点位置会偏北(南), 吕宋海峡东侧黑潮流量减弱(增强), 西向吕宋海峡输运则增强(减弱)(Masumoto et al, 1991; Tozuka et al, 2002; Kim et al, 2004; Yaremchuk et al, 2004; Chen et al, 2015)。最近的研究也表明吕宋海峡输运存在显著的年代际变化, 自1990年代以来吕宋海峡输运呈现下降趋势(Nan et al, 2013), 伴随着南海北部上层海洋的淡化(吴立新 等, 2013; Zeng et al, 2014), 可能与黑潮跨越吕宋海峡向北的频率增加, 入侵南海减少有关(Yang et al, 2012; Nan et al, 2016), 而2012年之后南海北部上层海洋出现的盐化则可能与西向吕宋海峡输运增加有直接关联(Zeng et al, 2018)。
吕宋海峡附近热带气旋活动频繁, 路径复杂, 且其东侧海域是西北太平洋热带气旋发生迅速增强的主要区域(Sun et al, 2019; Yang et al, 2022)。热带气旋的强风和降雨对黑潮入侵路径、强度以及垂直结构等的影响与其在吕宋海峡附近的位置、强度、移动方向以及移动速度等都密切相关(刘广平 等, 2012; Hsu et al, 2018)。热带气旋的东北风场异常作用于吕宋海峡的东(西)侧时, 则有利于向西(东)的吕宋海峡输运(Kuo et al, 2018)。热带气旋活动不仅改变海表的海流方向, 也能影响上层海洋的温盐结构, 改变吕宋海峡输运的垂向分布等(Chang et al, 2010; Kuo et al, 2011; Hsu et al, 2018; 隋俊鹏 等, 2018)。
热带气旋作为强烈的天气事件, 虽然对黑潮沿吕宋海峡向北流动过程的直接作用时间较短, 但是强度非常大, 而且热带气旋活动在吕宋海峡附近发生频率高且具有显著的季节、年际和年代际变化规律, 对吕宋海峡输运的影响不可忽视。另一方面, 吕宋海峡输运的变化直接影响南海, 尤其是南海东北部海域的温盐结构和环流特征, 因此准确评估热带气旋活动对吕宋海峡输运的特征和影响机制有利于我们深入理解南海海洋动力环境和海气相互作用的变化规律。本文回顾了前人关于热带气旋活动影响黑潮及南海东北部海域温盐和环流结构异常的研究成果, 梳理目前关于热带气旋活动影响吕宋海峡输运的相关研究, 提出了该领域中一些亟待解决的科学问题, 为进一步评估热带气旋活动在吕宋海峡输运变化中的贡献提供可能的研究方向。

1 吕宋海峡附近的热带气旋活动特征

吕宋海峡位于南海和西北太平洋之间, 同时受来自西北太平洋和南海热带气旋活动的影响。西北太平洋热带气旋生成频数的高峰季为7—10月, 8月最多, 也具有显著的年际、年代际等变化特征(Goh et al, 2010; Du et al, 2011; Li et al, 2014b)。研究表明西太平洋热带气旋生成频数的年际变化与ENSO的相关性较小(Lander, 1994; Chan et al, 2000; Saunders et al, 2000), 但最近发现与中部型厄尔尼诺呈显著的正相关(Chen et al, 2010; Kim et al, 2011; Patricola et al, 2018)。与生成频数不同, 西北太平洋热带气旋的生成位置的年际变化与ENSO较高的相关性得到普遍的肯定, 拉尼娜期间, 由于沃克环流上升支西移, 吕宋海峡附近海域对流辐合增强, 有利于热带气旋的生成和发展, 而厄尔尼诺年则相反(Chan et al, 2000)。总体来看, 拉尼娜期间西北太平洋热带气旋生成位置偏西北, 更容易影响吕宋海峡附近的海域, 而厄尔尼诺期间热带气旋生成位置偏东南(Chia et al, 2002; Wang et al, 2002)(图1)。年代际尺度上, 太平洋年代际振荡(Pacific decadal oscillation, PDO)正(负)位相对应西北太平洋偏少(多)的热带气旋生成。PDO负位相时, 西北太平洋热带气旋生成的位置偏西北(Wang et al, 2014b)。此外, 季节内振荡也会影响西太平洋的热带气旋的生成、强度、路径(Li et al, 2013a, 2013b)。
图1 强厄尔尼诺年(a)和强拉尼娜年(b) 秋季西太平洋包括南海的热带气旋活动

改自Wang等(2002)

Fig. 1 Tropical cyclone activity in the western North Pacific during the autumn for strong El Niño years (a) and strong La Niña years (b), modified from Wang et al (2002)

西北太平洋热带气旋生成后, 一般会有西行、西北行和折北行三种路径(Ho et al, 2004, Liu et al, 2008; Wu et al, 2015)。其中西北行或者在吕宋海峡附近折北行路径的热带气旋最可能影响吕宋海峡附近海域。西北行的热带气旋可能穿过菲律宾岛或者吕宋海峡进入南海(Sun et al, 2017), 一般发生在每年的6‒10月, 这些进入南海的热带气旋数目也有显著的年际变化, 厄尔尼诺年偏少, 而拉尼娜年偏多, 与副高位置的变化密切相关(Goh et al, 2010; Chen et al, 2017), 而折北行路径中一部分在吕宋海峡东侧折向北, 也有进入南海后在吕宋海峡以西转向北。
南海作为西北太平洋最大的边缘海, 其热带气旋活动有显著区别于西太平洋热带气旋的特征 (Wang et al, 2012; Yan et al, 2012; Li et al, 2014a; Ling et al, 2015)。南海局地生成的热带气旋主要生成于夏季风盛行期间的6—10月, 9月最多, 生成位置偏北, 而11月开始生成频数减少, 且主要发生于南海南部。南海局地的生成的热带气旋也具有显著的年际和年代际变化。研究表明南海热带气旋频数的年际变化与ENSO的相关性较小(Goh et al, 2010; Li et al, 2017), 年代际变化上与PDO的位相变化相关显著, 一般认为PDO正(负)位相对应更少(多)热带气旋在南海生成(Goh et al, 2010)。Li等(2014a) 提出印度洋北部及西太平洋之间的海温差异是南海台风生成频率年代际变化的原因。最近的研究也表明夏季南海局地的热带气旋数目与中部型厄尔尼诺有正相关, 而秋季则与东部型厄尔尼诺呈反相关(Chen, 2011)。南海局地热带气旋在路径上一般可以分为东行和西行路径, 西行的热带气旋多登陆华南和越南沿岸, 在吕宋海峡附近生成概率高, 且容易发生强度增强(Sun et al, 2019; Yang et al, 2022), 对南海北部环流有显著影响。东行的热带气旋发生的频数大约为西行热带气旋的三分之一, 主要发生在春夏季节, 很大概率穿越吕宋海峡进入太平洋, 与季节内振荡活动和副热带高压的强度等关系密切(Yang et al, 2015; Ling et al, 2016; Luo et al, 2022), 对南海北部和吕宋海峡东西侧的上层海洋影响更直接。全球气候变化的大背景下, 一方面, 西北太平洋热带气旋活动可能出现生成纬度偏北、移动速度减缓、生成数目减少等变化趋势(Kossin et al, 2016; Kossin, 2018; Klotzbach et al, 2022); 另一方面伴随印太暖池的变暖, 季节内振荡的位相周期变化可能影响热带气旋的生成数目、强度和路径特征, 也可能引起大尺度环流异常, 导致强热带气旋在菲律宾以东海域数目增多(He et al, 2017), 对吕宋海峡输运的影响也显著增加。

2 吕宋海峡输运的研究进展

大量的观测事实证明黑潮入侵南海在冬、夏都会发生, 冬季会显著增强(Fang et al, 1996; Metzger et al, 1996; Li et al, 1996; Chern et al, 1998; 刘秦玉 等, 2000; Qu et al, 2000; Yuan et al, 2014), 且入侵南海的范围也更广(Farris et al, 1996; Liang et al, 2008)。黑潮入侵路径主要取决于惯性和Beta效应的平衡(Sheremet, 2001; Xue et al, 2004)。进一步的研究表明, 黑潮除了可以直接流入南海, 还可以表现为流套、跨越、甩涡等多种路径形态(刘秦玉 等, 1996; Hu et al, 1999; Li et al, 1998; Hu et al, 2000; Lu et al, 2013)。刘秦玉 等(1996)通过水文资料和卫星观测发现流套进入南海的位置在冬季位于海峡中、南部附近, 侵入范围较大, 而在夏季则略向北移, 较集中于海峡的中部, 侵入范围较小。Yuan等(2006)使用卫星观测的水色、海温和高度计资料则发现冬季黑潮入侵以直接路径为主, 而全年都有的流套入侵发生率为30%左右, 属于瞬变现象, 并且可能与吕宋海峡的中尺度涡旋活动密切相关。
通过使用多年卫星观测数据计算地转涡度在吕宋海峡以西(118°E—121°E, 19°N—23°N)海域的积分, Nan等(2011)获得三个典型的黑潮入侵路径: 流套(looping)、漏流(leaking)和跨越(leaping)。研究发现三个典型路径中漏流发生最频繁, 流套次之, 而跨越路径最少。从引起的西向吕宋海峡输送的流量上看流套路径期间流入南海的流量最多, 而跨越路径对应的流量则最少, 但是黑潮的次表层水在漏流路径的情况下入侵南海最远。不同黑潮入侵路径对应在吕宋海峡(120°30′E)的纬向流的结构有显著不同。流套路径是在吕宋海峡的中部流入, 北部流出; 漏流和跨越流的入流则相比流套的入流弱很多, 对应的西向吕宋海峡输运也从19Sv降低到14Sv。出流主要位于吕宋海峡的南部和中部, 其中漏流路径对应的出流很弱(Nan et al, 2011)。
吕宋海峡附近中尺度涡旋活动频繁(Lu et al, 2013; Lien et al, 2014), 因此如果积分区域中同时包含冷、暖涡旋, 则会出现正负地转涡度相互抵消的情况, 从而导致对路径形态判定不准确。因此在Nan等(2011)基础上, Huang等(2016)将积分区域缩小至(119°E—121°E, 20°N—22°N), 并采用对正负地转涡度分别积分的方法获得黑潮入侵指数, 进而将黑潮入侵路径分为暖涡路径, 冷涡路径和漏流。暖涡路径主要对应黑潮在吕宋海峡中部流入南海, 北部流出, 形成反气旋环流, 而当黑潮通过吕宋海峡北部流入的时候多对应的是黑潮主流跨越吕宋海峡, 西边支流进入南海形成气旋涡旋, 则为冷涡路径。暖涡路径和冷涡路径分别对应Nan等(2011)得到的流套和跨越路径。漏流路径则同样对应的是黑潮从吕宋海峡中部进入, 在吕宋海峡以东和以西均没有明显的涡旋活动。研究发现这三种路径中占主要部分的依然是漏流路径(Nan et al, 2011; Huang et al, 2016)。Huang等(2016)获得的三种路径的占比规律总体上与Nan等(2011)的一致, 即漏流最多, 流套和跨越流比例接近, 但是漏流的比例在Huang等(2016)中有所提高。暖涡路径(流套)季节变化明显, 主要发生在冬季, 而冷涡(跨越)季节变化不显著。但是二者都有明显的季节内和年际变化。
在垂直方向上年平均的吕宋海峡输运基本呈“三明治”结构, 即上层和深层为西向输运, 而中层为东向输运(Qu, 2002; Yuan et al, 2002; Tian et al, 2006; Hsin et al, 2012; 杨成浩 等, 2013; Nan et al, 2015)。东向输运过程中流出的海水经过吕宋海峡一般汇入黑潮主流的西侧, 很难继续向东(Chen et al, 1996)。在2000m以下的深层, 观测显示存在显著的黑潮入流, 西向吕宋海峡输运可以达到2.5Sv(Qu et al, 2006)。也有结果显示由于夏季受西南季风影响, 吕宋海峡存在表层东向流, 但是需要观测进一步证实(Hsin et al, 2012; Nan et al, 2013)。
吕宋海峡输运与黑潮输运或者北赤道流分叉后向北流的输运呈显著负相关(刘秦玉 等, 2000; Qu et al, 2004, 2006; Xiao et al, 2020)。Nan等(2013)发现1993年以来西向吕宋海峡输运呈现明显下降趋势, 同时伴随着南海北部的淡化现象(吴立新 等, 2013; Zeng et al, 2014), 与此同时, 黑潮输运则显著增强(Yang et al, 2012; Nan et al, 2016)。Zeng等(2018)又发现2012年之后南海北部结束了20年的淡化现象, 转而又出现盐化现象, 认为与PDO位相由负转正伴随吕宋海峡西向流异常增强, 从而导致西向吕宋海峡输运增加直接相关。吕宋海峡输运与ENSO的关系主要通过ENSO对黑潮输运的调制引起(Wang et al, 2020)。最近的研究也表明吕宋海峡输运存在显著的年代际变化。Yuan等(2012)使用SODA(simple ocean data assimilation)数据发现南海冬季上层环流在1959—2008年间减弱10%, 这可能与东亚季风减弱有关, 同时也发现黑潮的流套入侵出现了东撤的现象。
目前对年平均吕宋海峡输运的估算范围较大, 从零点几到十几Sv(Metzger et al, 1996; Xu et al, 2000; Gilson et al, 2002; Qu et al, 2006; Tian et al, 2006; Yuan et al, 2006; 董丹鹏 等, 2008; Liang et al, 2008; Lien et al, 2014; Ko et al, 2014)。Nan等(2015)整理了2013年以前对吕宋海输运在不同时间尺度上的估算方法。吕宋海峡输运的强度、垂直结构以及多时间尺度的变化等都与黑潮强度和入侵路径等密切相关, 特别是黑潮入侵路径形态多样且影响因素复杂, 给吕宋海峡输运的估算带来很大的不确定性。

3 吕宋附近热带气旋对黑潮的影响

黑潮沿吕宋岛东侧向北的过程中如果受到热带气旋活动的影响, 其流速、强度, 以及水平和垂直结构等都可能发生变化, 而这些变化又与热带气旋活动的特征, 包括移动方向、强度和移动速度有密切关系。一般来说, 热带气旋经过黑潮区域会使黑潮主流轴发生反气旋偏转(Tada et al, 2018), 而当黑潮流动的方向和热带气旋的气旋式旋转风场方向大致相同的时段, 黑潮流速会增加, 西向吕宋海峡输运则会减少; 反之, 黑潮减弱, 更有利于黑潮入侵南海以及西向的吕宋海峡输运(Hsu et al, 2018)。
热带气旋过境时, 上层海洋环境最显著的响应是海表面降温, 一般为2℃~4℃, 极端条件下可达10°C(Sun et al, 2010)。热带气旋的风应力会在海洋上混合层激发出近惯性振荡, 且近惯性流速呈现左右不对称性, 一般在台风移动路径的右侧流速更强(Sanford et al, 2011)。海表面降温也会响应这种不对称性, 最大的降温一般出现在台风路径右侧, 但在特殊情况下也会出现在路径左侧(Price et al, 1994)。移动速度缓慢的台风对海洋的强迫作用时间相对长, 引起上层海洋变冷的程度相对强, 而移动速度快的台风, 强迫作用时间则相对短, 但是如果是在风-流发生共振的情况下, 即便海洋处于松弛阶段, 近惯性流的垂直剪切引起的强烈垂直混合也能增强混合层的降温(Chang et al, 2010)。Kuo等(2011)使用模式研究了从西太平洋自东向西穿过吕宋海峡进入南海的两个台风对吕宋海峡附近上层海洋结构的影响, 发现在强迫阶段台风搅拌的冷水出现在台风路径的右侧(北侧), 但是随着台风过境, 处于松弛阶段时, 黑潮的暖水与台风引起的冷泉辐合可以使冷水向南(路径的左侧)输送。同时, 黑潮与吕宋海峡西侧南海北部上翻的冷水辐合更增强了吕宋海峡黑潮的锋面。
Hsu等(2019)通过研究不同路径和强度的热带气旋个例对吕宋海峡附近黑潮区域的影响, 发现黑潮的流轴容易受到热带气旋的影响而改变, 这样的改变可能部分来自于热带气旋伴随的中尺度涡旋的变异(Sun et al, 2009)。当吕宋海峡以东存在暖涡时, 热带气旋经过后会使暖涡减弱和变形, 从而影响黑潮的流轴, 西移的暖涡能导致黑潮流轴向西弯曲。如果吕宋海峡西侧存在冷涡时, 热带气旋影响之后冷涡增强, 同时加强的冷涡会使黑潮流轴东移(刘广平 等, 2012)。

4 吕宋附近热带气旋对南海东北部环流的影响

吕宋附近的热带气旋活动除了直接影响黑潮主流的状态之外, 还会显著影响南海东北部的环流结构和温盐特征。南海处于东亚季风区, 受季风影响, 其上层环流具有显著的季节变化(Fang et al, 1998; Qu et al, 2000; Wang et al, 2003; Gan et al, 2006; Xiao et al, 2013; Liu et al, 2000)。冬季东北季风期间, 南海表现为海盆尺度的气旋式环流, 包括吕宋海峡西侧的冷涡以及由于Beta效应沿着大陆架形成的向南的强化西边界流(Hu et al, 2000; Wang et al, 2013; Chen et al, 2014; Qiu et al, 2019)。冬季伴随黑潮入侵, 西向吕宋海峡输运也显著影响南海东北部的环流特征。夏季西南季风期间西边界流向北且强度相对于冬季明显减弱, 南海北(南)部为气旋式(反气旋)环流, 而中部11°12′N左右形成向东的急流(Wang et al, 2006b; Gan et al, 2008)。
南海环流除了季节变化以外, 也具有显著的年际变化(Chao et al, 1996; Wu et al, 2005; Wang et al, 2006a, 2006c), 尤其是南海南部环流(Zu et al, 2019)。ENSO通过调制季风环流影响南海环流(Zhao et al, 2016)。厄尔尼诺发展年的夏季南海夏季风增强, 南海环流加强, 南海中部向东的离岸急流也会增强(Shu et al, 2016), 相反, 厄尔尼诺衰退年的夏季南海环流则会减弱。厄尔尼诺的冬季, 伴随东亚季风的减弱, 南海西边界流减弱(Chao et al, 1996), 而在南海南部出现闭合的气旋式环流, 拉尼娜期间或者正常年西边界流增强且南海南部为不封闭的气旋式环流(Zu et al, 2019)。
热带气旋的强风能够引起强烈的环流异常, 气旋下方海洋的Ekman输运自气旋中心向外, 海表形成辐散流, 海面降低, 同时Ekman抽吸效应使温跃层的冷水上翻, 引起强烈的混合, 导致混合层流速增加, 混合层深度加深, 以及海表温度降低(Hart et al, 2007; Jiang et al, 2009; Dare et al, 2011)。Chu等(1999)利用POM(Princeton Ocean Model)模式研究了南海对热带气旋“Ernie”的响应, 发现海表层降温在热带气旋轨迹右边更明显, 同时还存在较强的辐散流。崔红 等(2009)利用POM模式研究了南海上层海洋对西太平洋生成西北行进入南海的热带气旋Imbudo(2003)的响应过程, 发现台风的强混合作用可以使混合层流速接近1.5m·s-1, 且深度加深10~60m(图2)。孙璐 等(2008)使用观测资料发现热带气旋Leo(1999)和Wukong(2000)经过南海北部时, 海面高度平均降低30cm, 流场上呈现气旋式环流, 海表面温度降低2℃左右, 并且在尾迹上出现冷涡。Jiang等(2009)发现热带气旋“Krovanh” (2003)引起路径右侧降温最高达5.3℃, 且路径右侧的混合层深度增加比左侧多58m。热带气旋的移动速度和强度变化都会引起海洋的不同响应。
图2 7月份台风Imbudo(2003)经过吕宋海峡时右侧位置(118°E, 19°45′N)的上层水深温度随时间的变化序列(a)及混合层深度随时间的变化序列(b)

改自崔红 等(2009)

Fig. 2 Time series of the upper ocean temperature (a) and mixed layer depth (b) at the location (118°E, 19°45′N) in the South China Sea in July, 2013 when the Typhoon Imbudo passed the Luzon Strait, after Cui et al (2009)

热带气旋的风场对南海的能量输入主要集中在南海的中北部, 对南海表层流和波浪能量输入的贡献占风场贡献的10%和6%(凌征 等, 2012)。南海的热带气旋活动在南海西北(东南)部引起正(负)的风应力旋度, 从而增强夏季的北(南)部的气旋(反气旋)环流, 而在冬季则会引起海盆尺度的正的风应力旋度, 也会增强冬季南海北部的气旋式环流。热带气旋在海表面的影响还会通过近惯性振荡向深海传播, 影响南海的深层环流混合, 增强大气向海洋的能量输送, 对民都洛海峡和卡里马塔海峡的热量输出有调制作用(Wang et al, 2014a)。热带气旋经过海域会出现大面积的冷水, 可能维持数日, 引发持续的气候效应, 包括海温的季节变化异常, 由于南海热带气旋活动的季节性变化, 其对海洋的影响也有显著的季节差异。夏季热带气旋引起的海表降温可能导致海表温度的季节循环周期缩短(Vincent et al, 2012)。

5 热带气旋对吕宋海峡输运的影响

吕宋海峡附近的热带气旋活动不仅可以直接影响南海东北部环流, 也能够影响黑潮的强度和路径(Chang et al, 2010), 进而影响黑潮入侵南海。热带气旋活动对黑潮入侵路径或者强度等的影响与其在吕宋海峡附近的位置、强度、移动方向以及移动速度等都密切相关(刘广平 等, 2012)。当黑潮流动的方向和热带气旋的气旋式旋转方向相同时, 黑潮会增强; 反之, 黑潮减弱(Hsu et al, 2018)。Chang等(2010)发现热带气旋的强风引起的海流方向变化可以持续两天以上, 黑潮的流速会被减慢或者反向, 与台风的强度有直接关系。Chen等(2010)通过使用HYCOM(hybrid coordinate ocean model)模式发现了台风Nuri在到达吕宋海峡西侧后, 地转流方向是由南海流向西太平洋。期间黑潮的流动情况一直保持着跨越流状态。而在台风Sinlaku影响下, 黑潮路径则从流套形式变成了跨越流。
Kuo等(2018)使用海气耦合模式研究了生成于吕宋岛东北部海域的台风Nanmadol(2011)活动期间黑潮与台风的相互作用, 结果显示在台风穿过吕宋海峡进入南海并向西北方向移动的过程中黑潮的流速会显著增强且随着台风穿过海峡, 黑潮主流轴从南到北向东偏移, 也就是说会削弱黑潮的入侵。具体来看, 台风前部的东北风会引起海表面西向的Ekman流动, 吕宋海峡上层出现显著的西向输运异常(Wang et al, 2021), 而次表层东向流动则由于压强梯度的增加而增强, 导致向东的输送(Tian et al, 2006; Kuo et al, 2011), 而台风后部的西南风场则有相反的作用。Gao等(2023)使用海—气—浪—沉积物传输模式研究了在黑潮主流轴右侧向东北移动的台风“Noul”(2015)对吕宋海峡处的黑潮入侵流的影响, 发现台风过境导致的黑潮入侵主要发生在次表层, 且能维持20d之久, 入侵南海北部的流量达到了台风经过之前的两倍。西太平洋的台风“蒲公英”(2004)西行靠近吕宋海峡时, 路径转向北, 在北行跨过吕宋海峡的过程中, 在吕宋海峡附近引起了强烈的北风异常, 最大值位于吕宋海峡以内, 并诱导了西向的纬向流, 截断了黑潮向北的流动, 并在其南和北各形成一个反气旋涡, 减弱了黑潮的主流, 也更有利于黑潮入侵南海(隋俊鹏 等, 2018)(图3a、b)。研究进一步对比了HYCOM模拟结果与50m以浅的Ekman输运, 二者基本相符, 说明台风引起的西向吕宋海峡输运异常主要与Ekman输运过程相关(隋俊鹏 等, 2018)(图3c)。
图3 6月30日台风“蒲公英”(2004)到达吕宋海峡时位置对应的海面风场分布(箭头)、相应时间的风应力旋度分布(填色) (a)和上50m流速(箭头)及涡度场分布(填色) (b), 以及台风过境期间吕宋海峡垂直积分体积输运的时间演变(c)

改自隋俊鹏 等(2011)

Fig. 3 Surface wind (vector) and the corresponding wind stress curl (shadings) (a) and ocean current (vector) and vorticity (shading) (b) on June 30th when the Typhoon Dandelion (2001) arrived in the Luzon Strait, as well as vertical integration of Luzon Strait transport during the passage of Typhoon Dandelion (2004) (c). After Sui et al (2011)

热带气旋进入南海后的移动速度和走向也直接影响其对黑潮入侵的影响。台风“Megi”(2010)西行穿过吕宋海峡进入南海后速度减慢并折向北穿过台湾海峡。在这个过程中台风后部的西南风场在吕宋海峡的西部持续作用引起东向的流场, 海水向东经吕宋海峡流出南海, 从而减弱黑潮的入侵(Ko et al, 2014)。也有研究认为吕宋海峡附近热带气旋活动对吕宋海峡输运的影响是通过改变冷暖中尺度涡旋的强度和形态进行的。比如, 热带气旋可以通过减弱(增强)吕宋海峡东侧暖涡(冷涡), 从而有利于(不利于)黑潮的入侵, 进而增强(减弱)西向的吕宋海峡输运(Yuan et al, 2006; 袁东亮 等, 2008; Sun et al, 2009; 刘广平 等, 2012; Lien et al, 2014; Qian et al, 2018)。

6 展望

前人的研究通过现场资料、卫星观测以及模式模拟等手段, 针对热带气旋个例探讨其对黑潮入侵南海的强度、路径等的影响。不同的热带气旋个例(强度、路径以及移动速度等)对黑潮入侵影响各有不同, 相应的影响机制和对吕宋海峡输运的具体影响还需要进一步研究。
西北太平洋和南海的热带气旋活动存在显著的季节内、年际及年代际变化, 那么热带气旋引起的吕宋海峡输运异常是否存在相应的多时间尺度变率?在全球气候变化的背景下, 热带气旋活动也有显著的变化趋势, 相应引起的黑潮入侵的变化趋势又是怎样呢?这些科学问题值得在未来的研究中加以重点关注。在进一步的研究中, 需要细化不同热带气旋路径与不同黑潮入侵路径匹配情况下吕宋海峡输运的具体变化, 并使用模式敏感实验等方法进行验证和动力分析。
[1]
崔红, 张书文, 毛庆业, 2009. 南海对于台风伊布都响应的数值计算[J]. 物理学报, 58(9): 6609-6615.

CUI HONG, ZHANG SHUWEN, MAO QINGYE, 2009. Numerical calculation of the response of the South China Sea to typhoon imbudo[J]. Acta Physica Sinica, 58(9): 6609-6615. (in Chinese with English abstract)

DOI

[2]
董丹鹏, 周伟东, 杨阳, 等, 2008. 对南海主要出流通道的诊断及讨论[J]. 热带海洋学报, 27(6): 1-5.

DONG DANPENG, ZHOU WEIDONG, YANG Yang, et al, 2008. Diagnostic calculations and discussions on main outflow passage of South China Sea[J]. Journal of Tropical Oceanography, 27(6): 1-5. (in Chinese with English abstract)

[3]
李薇, 李立, 刘秦玉, 1998. 吕宋海峡及南海北部海域的水团分析[J]. 台湾海峡, 2: 207-213.

LI WEI, LI LI, LIU QINYU, 1998. Mass analysis over the Luzon Strait and the Northern South China Sea[J]. Taiwan Strait, 2: 207-213. (in Chinese with English abstract)

[4]
凌征, 金宝刚, 崔红, 等, 2012. 热带气旋对南海表层流和波浪的能量输入[J]. 热带海洋学报, 42(7): 10-18.

LING ZHENG, JIN BAOGANG, CUI HONG, et al, 2012. Evaluation of the wind energy input to the surface currents and waves induced by the tropical cyclones in the South China Sea[J]. Journal of Tropical Oceanography, 42(7): 10-18. (in Chinese with English abstract)

[5]
刘长建, 杜岩, 张庆荣, 等, 2008. 南海次表层和中层水团年平均和季节变化特征[J]. 海洋与湖沼, 39(1): 55-64.

LIU CHANGJIAN, DU YAN, ZHANG QINGRONG, et al, 2008. Seasonal variation of subsurface and intermediate water masses in the South China Sea[J]. Oceanologia et Limnologica Sinca, 39(1): 55-64. (in Chinese with English abstract)

[6]
刘广平, 胡建宇, 2012. 热带气旋过境期间黑潮流轴变化的初步分析[J]. 热带海洋学报, 31(1): 35-42.

DOI

LIU GUANGPING, HU JIANYU, 2012. A Preliminary analysis of variation of the Kuroshio axis during tropical cyclone[J]. Journal of Tropical Oceanography, 31(1): 35-42. (in Chinese with English abstract)

[7]
刘秦玉, 刘倬腾, 郑世培, 等, 1996. 黑潮在吕宋海峡的形变及动力机制[J]. 青岛海洋大学学报, 4: 413-420.

LIU QINYU, LIU CHUOTENG, ZHENG SHIPEI, et al, 1996. The deformation of Kuroshio in the Luzon Strait and its dynamics[J]. Journal of Ocean University of Qingdao, 4: 413-420. (in Chinese with English abstract)

[8]
刘秦玉, 杨海军, 李薇, 等, 2000. 吕宋海峡纬向海流及质量输送[J]. 海洋学报, 22(2): 1-8.

LIU QINYU, YANG HAIJUN, LI WEI, et al, 2000. Velocity and transport of the zonal current in the Luzon Strait[J]. Acta Oceanologica Sinica, 22(2): 1-8. (in Chinese with English abstract)

[9]
沈辉, 贾英来, 张笑, 等, 2013. 吕宋海峡以东海洋涡旋对黑潮及南海的影响[J]. 中国海洋大学学报(自然科学版), 43(6): 9-16.

SHEN HUI, JIA YINGLAI, ZHANG XIAO, et al, 2013. Effect on eddies in the east of the Luzon Strait to the Kuroshio and the South China Sea[J]. Periodical of Ocean University of China, 43(6): 9-16. (in Chinese with English abstract)

[10]
隋俊鹏, 陈海军, 王主玉, 等, 2018. 2004年台风“蒲公英”引起吕宋海峡海洋上层输运异常分析[J]. 海洋预报, 35(5): 1-6.

SUI JUNPENG, CHEN HAIJUN, WANG ZHUYU, et al, 2018. Analysis of the Luzon Strait transport anomalies caused by typhoon ‘Dandelion’ in 2004[J]. Marine Forecasts, 35(5): 1-6. (in Chinese with English abstract)

[11]
孙璐, 王东晓, 胡建宇, 等, 2008. 南海北部海洋对局地生成热带气旋的响应[J]. 热带海洋学报, 27(4): 10-18.

SUN LU, WANG DONGXIAO, HU JIANYU, et al, 2008. Responses of upper layer of northern South China Sea to two locally-generated tropical cyclones[J]. Journal of Tropical Oceanography, 27(4): 10-18. (in Chinese with English abstract)

[12]
吴立新, 陈朝晖, 2013. 物理海洋观测研究的进展与挑战[J]. 地球科学进展, 28(5): 542-551.

DOI

WU LIXIN, CHEN ZHAOHUI, 2013. Progresses and challenges in observational studies of physical oceanography[J]. Advances in Earth Science, 28(5): 542-551. (in Chinese with English abstract)

[13]
杨成浩, 廖光洪, 袁耀初, 等, 2013. ADCP观测得到的2008年4月吕宋海峡流速剖面结构[J]. 海洋学报, 35(3): 1-10.

YANG CHENGHAO, LIAO GUANGHONG, YUAN YAOCHU, et al, 2013. Structures of velocity profile in the Luzon Strait measured by LADCP in April 2008[J]. Acta Oceanologica Sinica, 35(3): 1-10. (in Chinese with English abstract)

[14]
杨龙奇, 许东峰, 徐鸣泉, 等, 2014. 黑潮入侵南海的强弱与太平洋年代际变化及厄尔尼诺南方涛动现象的关系[J]. 海洋学报, 36(7): 17-26.

YANG LONGQI, XU DONGFENG, XU MINGQUAN, et al, 2013. A study of correlation between Pacific Decadal Oscillation and El Nino-Southern Oscillation and the strength of Kuroshio intrusion into the South China Sea[J]. Acta Oceanologica Sinica, 36(6): 17-26. (in Chinese with English abstract)

DOI

[15]
袁东亮, 李锐祥, 2008. 中尺度涡旋影响吕宋海峡黑潮变异的动力机制[J]. 热带海洋学报, 27(4): 1-9.

YUAN DONGLIANG, LI RUIXIANG, 2008. Dynamics of eddy-induced Kuroshio variability in Luzon Strait[J]. Journal of Tropical Oceanology, 27(4): 1-9. (in Chinese with English abstract)

[16]
CENTURIONI L R, NIILER P P, LEE D K, 2004. Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait[J]. Journal of Physical Oceanography, 34(1): 113-121.

DOI

[17]
CHAN J C L, 2000. Tropical cyclone activity over the Western North Pacific associated with El Nino and La Nina events[J]. Journal of Climate, 13(16): 2960-2972.

DOI

[18]
CHANG Y C, Tseng R S, Centurioni L R, 2010. Typhoon-induced strong surface flows in the Taiwan Strait and Pacific[J]. Journal of Oceanography, 66(2): 175-182.

DOI

[19]
CHAO S, SHAW P, WU S, 1996. El Niño modulation of the South China Sea circulation[J]. Progress Oceanography, 38(1): 51-93.

DOI

[20]
CHEN C, HUANG M, 1996. A mid-depth front separating the South China Sea water and the Philippine Sea water[J]. Journal of Oceanography, 52: 17-25.

DOI

[21]
CHEN C, YEH Y, CHEN Y, et al, 2015. Seasonal and ENSO-related interannual variability of subsurface fronts separating West Philippine Sea waters from South China Sea waters near the Luzon Strait[J]. Deep-Sea Research I, 103: 13-23.

DOI

[22]
CHEN FEI, DU YAN, YAN LI, et al, 2010. Response of upper ocean currents to typhoons at two ADCP moorings west of the Luzon Strait[J]. Chinese Journal of Oceanology and Limnology, 28(5): 1002-1011.

DOI

[23]
CHEN GENGXIN, XUE HUIJIE, 2014. Westward intensification in marginal seas[J]. Ocean Dynamics, 64: 337-345.

DOI

[24]
CHEN GUANGHUA, 2011. How does shifting Pacific Ocean warming modulate on tropical cyclone frequency over the South China Sea?[J]. Journal of Climate, 24(17): 4695-4700.

DOI

[25]
CHEN GUANGHUA, TAM C, 2010. Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the Western North Pacific[J]. Geophysical Research Letter, 37(1): L01803.

[26]
CHEN J, TAN P, WU L, et al, 2017. Climatological analysis of passage-type tropical cyclones from the Western North Pacific into the South China Sea[J]. Terrestrial Atmospheric and Oceanic Sciences, 28(3): 327-343.

DOI

[27]
CHEN Y, TSENG R, CENTURIONI L, 2010. Typhoon-induced strong surface flows in the Taiwan Strait and Pacific[J]. Journal of Oceanography, 66: 175-182.

DOI

[28]
CHERN C, WANG J, 1998. A numerical study of the summertime flow around the Luzon Strait[J]. Journal of Oceanography, 54: 53-64.

DOI

[29]
CHIA H, ROPELEWSKI C F, 2002. The interannual variability in the Genesis Location of tropical cyclones in the Northwest Pacific[J]. Journal of Climate, 15(20): 2934-2944.

DOI

[30]
CHU P, LV S, LIU W, 1999. Uncertainty of South China Sea prediction using NSCAT and NCEP winds during tropical storm Ernie 1996[J]. Journal of Geophysical Research, 104(C5): 11273-11289.

DOI

[31]
DARE R, MCBRIDE J, 2011. Sea surface temperature response to tropical cyclones[J]. Monthly Weather Review, 139(12): 3798-3808.

DOI

[32]
DU Y, YANG L, XIE S, 2011. Tropical Indian Ocean Influence on Northwest Pacific Tropical Cyclones in Summer Following Strong El Nino[J]. Journal of Climate, 24(1): 315-322.

DOI

[33]
FANG GUOHONG, FANG WENDONG, FANG YUE, et al, 1998. A survey of studies on the South China Sea upper ocean circulation[J]. Acta Oceanography Taiwan, 37: 1-16.

[34]
FANG YUE, FANG GUOHONG, YU KEJUN, 1996. ADI barotropic ocean model for simulation of Kuroshio intrusion into China southeastern waters[J]. Chinese Journal of Oceanology and Limnology, 14(4): 357-366.

DOI

[35]
FARRIS A, WIMBUSH M, 1996. Wind-induced Kuroshio intrusion into the South China Sea[J]. Journal of Oceanography, 52: 771-784.

DOI

[36]
GAN JIANPING, LI H, Curchitser E, et al, 2006. Modeling South China Sea circulation: Response to seasonal forcing regimes[J]. Journal of Geophysical Research, 111(C6): C06034.

[37]
GAN JIANPING, QU TANGDONG, 2008. Coastal jet separation and associated flow variability in the southwest South China Sea[J]. Deep Sea Research I, 55(1): 1-19.

DOI

[38]
GAO SHUMIN, HAN SHUZONG, WANG SHICHENG, et al. 2023. The influence of Typhoon “Hongxia” on the intrusion of the Kuroshio current into the South China Sea[J]. J. Ocean Univ. China (Oceanic and Coastal Sea Research), 22(2): 297-312.

[39]
GILSON J, ROEMMICH D, 2002. Mean and temporal variability in Kuroshio geostrophic transport south of Taiwan (1993-2001)[J]. Journal of Oceanography, 58: 183-195.

DOI

[40]
GOH A, CHAN J C L, 2010. Interannual and interdecadal variations of tropical cyclone activity in the South China Sea[J]. International Journal of Climatology, 30: 827-843.

DOI

[41]
HART R E, MAUE R N, WATSON M C, 2007. Estimating local memory of tropical cyclones through MPI anomaly evolution[J]. Monthly Weather Review, 135(12): 3990-4005.

DOI

[42]
HE HAOZHE, YANG JING, WU LIGUANG, et al, 2017. Unusual growth in intense typhoon occurrences over the Philippine Sea in September after the mid-2000s[J]. Climate Dynamics, 48: 1893-1910.

DOI

[43]
HO C, BAIK J, KIM H, et al, 2004. Interdecadal changes in summertime typhoon tracks[J]. Journal of Climate, 17(9): 1767-1776.

DOI

[44]
HSIN Y, QU T, WU C, 2010. Intra-seasonal variation of the Kuroshio southeast of Taiwan and its possible forcing mechanism[J]. Ocean Dynamics, 60: 1293-1306.

DOI

[45]
HSIN Y, WU C, CHAO S, 2012. An updated examination of the Luzon Strait transport[J]. Journal of Geophysical Research, 117(C3): C03022.

[46]
HSU P, HO C, 2019. Typhoon-induced ocean subsurface variations from glider data in the Kuroshio region adjacent to Taiwan[J]. Journal of Oceanography, 75(1): 1-21.

DOI

[47]
HSU T, CHOU M, HOU T, et al, 2018. Typhoon effect on Kuroshio and Green Island wake: A modelling study[J]. Ocean Science, 12(6): 3199-3233.

[48]
HU J, LIANG H, ZHANG X, 1999. Sectional distribution of salinity and its indication of Kuroshio’s intrusion in southern Taiwan Strait and northern South China Sea late summer, 1994[J]. Acta Oceanologica Sinica, 18(2): 237-246.

[49]
HU J, KAWAMURA H, HONGI H, et al, 2000. A review on the currents in the South China Sea: Seasonal circulation, South China Sea Warm Current and Kuroshio intrusion[J]. Journal of Oceanography 56: 607-624.

[50]
HUANG Z, LIU H, HU J, et al, 2016. A double-index method to classify kuroshio intrusion paths in the Luzon Strait[J]. Advances in Atmospheric Science, 33(6): 715-729.

DOI

[51]
JIANG XIAOPING, ZHONG ZHONG, JIANG JING, 2009. Upper ocean response of the South China Sea to Typhoon Krovanh (2003)[J]. Dynamic Atmospheres and Oceans, 47(1-3): 165-175.

DOI

[52]
KIM H, WEBSTER P J, CURRY J A, 2011. Modulation of North Pacific tropical cyclone activity by the three phases of ENSO[J]. Journal of Climate, 24(6): 1839-1849.

DOI

[53]
KIM Y, QU T, JENSEN T, et al, 2004. Seasonal and interannual variations of the North Equatorial Current bifurcation in a high resolution OGCM[J]. Journal of Geophysical Research, 109(3): C03040.

[54]
KLOTZBACH P J, WOOD K M, SCHRECK , et al, 2022. Trends in global tropical cyclone activity: 1990-2021[J]. Geophysical Research Letters, 49(6): e2021GL095774.

[55]
KO D, CHAO S, WU C, et al, 2014. Impacts of Typhoon Megi (2010) on the South China Sea[J]. Journal of Geophysical Research, 119(7): 4474-4489.

[56]
KOSSIN J P, 2018. A global slowdown of tropical cyclone translation speed[J]. Nature, 558: 104-107.

DOI

[57]
KOSSIN J P, EMANUEL K A, CAMARGO S J, 2016. Past and projected changes in western North Pacific tropical cyclone exposure[J]. Journal of Climate, 29(16): 5725-5739.

DOI

[58]
KUO YICHUN, CHERN CHINGSHENG, WANG J, et al, 2011. Numerical study of upper ocean response to a typhoon moving zonally across the Luzon Strait[J]. Ocean Dynamics, 61: 1783-1795.

DOI

[59]
KUO YICHUN, ZHANG ZHEWEN, ZHENG QUANAN, et al, 2018. Typhoon-Kuroshio interaction in an air-sea coupled system: Case study of typhoon nanmadol (2011)[J]. Ocean modelling, 132: 130-138.

DOI

[60]
LANDER M A, 1994. An exploratory analysis of the relationship between tropical storm formation in the Western North Pacific and ENSO[J]. Monthly Weather Review, 122(4): 636-651

DOI

[61]
LI LI, NOWLIN W D, SU JILAN, 1998. Anticyclonic rings from the Kuroshio in the South China Sea[J]. Deep-Sea Research, 45(9): 1469-1482.

DOI

[62]
LI R, GUO D, ZENG Q, 1996. Numerical simulation of interrelation between the Kuroshio and the current of the northern South China Sea[J]. Progress in Natural Science, 6(3): 325-332.

[63]
LI R C Y, ZHOU W, SHUN C, et al, 2017. Change in destructiveness of landfalling tropical cyclones over China in recent decades[J]. Journal of Climate, 30(9): 3367-3379.

DOI

[64]
LI R C Y, ZHOU WEN, 2014a. Interdecadal change in South China Sea tropical cyclone frequency in association with Zonal Sea Surface temperature gradient[J]. Journal of Climate, 27(14): 5468-5480.

DOI

[65]
LI R C Y, ZHOU W, 2014b. Influences of the Pacific-Japan teleconnection pattern on synoptic-scale variability in the western North Pacific[J]. Journal of Climate, 27(1): 140-154.

DOI

[66]
LI R C Y, ZHOU W, 2013a. Modulation of Western North Pacific Tropical Cyclone Activity by the ISO. Part I: Genesis and Intensity[J]. Journal of Climate, 26(9): 2904-2918.

DOI

[67]
LI R C Y, ZHOU WEN, 2013b. Modulation of Western North Pacific Tropical Cyclone Activity by the ISO. Part Ⅱ: Tracks and Landfalls[J]. Journal of Climate, 26(9): 2919-2930.

DOI

[68]
LIANG W, TANG T, YANG Y, et al, 2003. Upper-ocean currents around Taiwan[J]. Deep-Sea Research Ⅱ 50(6-7): 1085-1105.

[69]
LIANG W, YANG J, TANG T, et al, 2008. Kuroshio in the Luzon Strait[J]. Journal of Geophysical Research, 113(8): C08048.

[70]
LIEN R B, MA Y, CHENG C, et al, 2014. Modulation of Kuroshio transport by mesoscale eddies at the Luzon Strait entrance[J]. Journal of Geophysical Research, 119(4): 2129-2142.

[71]
LING ZHENG, WANG GUIHUA, WANG CHUNZAI, et al, 2015. Out-of-phase relationship between tropical cyclones generated locally in the South China Sea and non-locally from the Northwest Pacific Ocean[J]. Climate Dynamics, 45: 1129-1136.

DOI

[72]
LING ZHENG, WANG YUQING, WANG GUIHUA, 2016. Impact of Intraseasonal Oscillations on the Activity of Tropical Cyclones in summer over the South China Sea. Part I: Local Tropical Cyclones[J]. Journal of Climate, 29(2): 855-868.

DOI

[73]
LIU K, CHAN J C L, 2008. Interdecadal variability of western north Pacific tropical cyclone tracks[J]. Journal of Climate, 21(17): 4464-4476.

DOI

[74]
LIU YONGGANG, YUAN YAOCHU, SU JILAN, et al, 2000. Circulation in the South China Sea in summer of 1998[J]. Chinese Science Bulletin, 45(18): 1648-1655.

DOI

[75]
LU JIUYOU, LIU QINYU, 2013. Gap-leaping Kuroshio and blocking westward-propagating Rossby wave and eddy in the Luzon Strait[J]. Journal of Geophysical Research, 118(3): 1170-1181.

[76]
LUO X, YANG L, CHEN S, et al, 2022. The decadal variation of eastward-moving tropical cyclones in the South China Sea during 1980-2020[J]. Geophysical Research Letter, 49(5): e2021GL096640.

[77]
MASUMOTO Y, YAMAGATA T, 1991. Response of the western tropical Pacific to the Asian winter monsoon: The generation of the Mindanao Dome[J]. Journal of Physical Oceanography, 21(9): 1386-1398.

DOI

[78]
METZGER E J, HURLBURT H E, 1996. Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 101(C5): 12331-12352.

[79]
NAN FENG, XUE HUIJIE, CHAI FEI, et al, 2011. Identification of different types of Kuroshio intrusion into the South China Sea[J]. Ocean Dynamics, 61: 1291-1304.

DOI

[80]
NAN FENG, XUE HUIJIE, CHAI FEI, et al, 2013. Weakening of the Kuroshio intrusion into the South China Sea over the past two decades[J]. Journal of Climate, 26(20): 8097-8110.

DOI

[81]
NAN FENG, XUE HUIJIE, YU FEI, 2015. Kuroshio intrusion into the South China Sea: A review[J]. Progress in Oceanography, 137: 314-333.

DOI

[82]
NAN FENG, YU FEI, XUE HUIJIE, et al, 2016. Freshening of the upper ocean in the South China Sea since the early 1990s[J]. Deep Sea Research Part I, 118: 20-29.

DOI

[83]
PATRICOLA C M, CAMARGO S J, KLOTZBACH, et al, 2018. The influence of ENSO flavors on western north Pacific tropical cyclone activity[J]. Journal of Climate, 31(14): 5395-5416.

DOI

[84]
PRICE J F, SANFORD T B, FORRISTALL G Z, 1994. Forced stage response to a moving hurricane[J]. Journal of Physical Oceanography, 24: 233-260.

DOI

[85]
QIAN SIMENG, WEI HAO, XIAO JINGEN, et al, 2018. Impacts of the Kuroshio intrusion on the two eddies in the Northern South China Sea in late spring 2016[J]. Ocean Dynamics, 68(12): 1695-1709.

DOI

[86]
QIU CHUNHUA, DAN HUO, LIU CHANGJIAN, et al, 2019. Upper vertical structures and mixed layer depth in the shelf of the Northern South China Sea[J]. Continental Shelf Research, 174: 26-34.

DOI

[87]
QU T, KIM Y, YAREMCHUK M, et al, 2004. Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea?[J]. Journal of Climate, 17(18): 3644-3657.

DOI

[88]
QU TANDONG, GIRTON J B, WHITEHEAD J A, 2006. Deepwater overflow through Luzon Strait[J]. Journal of Geophysical Research1, 11(C1): C01002.

[89]
QU TANGDONG, 2002. Evidence for water exchange between the South China Sea and the Pacific Ocean through the Luzon Strait[J]. Acta Oceanologica Sinica, 21(2): 175-185.

[90]
QU TANGDONG, MITSUDERA H, YAMAGATA T, 1999. A climatology of the circulation and water mass distribution near the Philippine coast[J]. Journal of Physical Oceanography, 29(7): 1488-1505.

DOI

[91]
QU TANGDONG, MITSUDERA H, YAMAGATA T, 2000. Intrusion of the North Pacific waters into the South China Sea[J]. Journal of Geophysical Research, 105(C3): 6415-6424.

DOI

[92]
SANFORD T B, PRICE J F, GIRTON J B, 2011. Upper-ocean response to hurricane Frances (2004) observed by profiling EM-APEX floats[J]. Journal of Physical Oceanography, 41(6): 1041-1056.

DOI

[93]
SAUNDERS M A, CHANDLER R E, MERCHANT C J, et al, 2000. Atlantic hurricanes and NW Pacific typhoons: ENSO spatial impacts on occurrence and landfall[J]. Geophysical Research Letters, 27(8): 1147-1150.

DOI

[94]
SONG Y, 2006. Estimation of interbasin transport using ocean bottom pressure: theory and model for Asian marginal seas[J]. Journal of Geophysical Research, 111(C11): C11S19.

[95]
SHAW P, 1991. The seasonal variation of the intrusion of the Philippine Sea water into the South China Sea[J]. Journal of Geophysical Research, 96(C1): 821-827.

DOI

[96]
SHEREMET V A, 2001. Hysteresis of a western boundary current leaping across a gap[J]. Journal of Physical Oceanography, 31(5): 1247-1259.

DOI

[97]
SHU YEQIANG, XUE HUIJIE, WANG DONGXIAO, et al, 2016. Observed evidence of the Anomalous South China Sea western boundary current during the summers of 2010 and 2011[J]. Journal of Geophysical Research, 121(2): 1145-1159.

[98]
SUN JINGRU, OEY L -Y, XU F, et al, 2019. Monthly variability of Luzon Strait tropical cyclone intensification over the Northern South China Sea in recent decades[J]. Climate Dynamics, 52: 3631-3642.

DOI

[99]
SUN JINGRU, XU F, OEY L -Y, et al, 2017. Sea level rise, surface warming, and the weakened buffering ability of South China Sea to strong typhoons in recent decades[J]. Scientific Report, 7(1): 7418.

[100]
SUN LIANG, YANG YUANJIAN, FU YUNFEI, 2009. Impact of typhoons on the Kuroshio large meander: Observation evidences[J]. Atmospheric and Oceanic Science Letters, 2(1): 45-50.

DOI

[101]
SUN LIANG, YANG YUANJIAN, XIAN TAO, et al, 2010. Strong enhancement of chlorophyll a concentration by a weak typhoon[J]. Marine Ecology-Progress Series, 2010, 404: 39-50.

DOI

[102]
TADA H, UCHIYAMA Y, MASUNAGA E, 2018. Impacts of two super typhoons on the Kuroshio and marginal seas on the pacific coast of Japan[J]. Deep Sea Research, 132: 80-93.

[103]
TIAN JIWEI, YANG QINGXUAN, LIANG XINFENG, et al, 2006. Observation of Luzon Strait transport[J]. Geophysical Research Letter, 33(9): L19607.

DOI

[104]
TOZUKA T, KAGIMOTO T, MASUMOTO Y, et al, 2002. Simulated multiscale variations in the western tropical Pacific: The Mindanao Dome revisited[J]. Journal of Physical Oceanography, 32(5): 1338-1359.

DOI

[105]
VINCENT E M, MADEC G, LENGAIGNE M, et al, 2013. Influence of tropical cyclones on sea surface temperature seasonal cycle and ocean heat transport[J]. Climate Dynamics, 41: 2019-2038.

DOI

[106]
WANG BIN, CHAN J C L, 2002. How strong ENSO events affect tropical storm activity over the Western North Pacific[J]. Journal of Climate, 15(13): 1643-1658.

DOI

[107]
WANG CHUNZAI, WANG WEIQIANG, WANG DONGXIAO, et al, 2006a. Interannual variability of the South China Sea associated with El Nino[J]. J Geophysical Research, 111(C3): C03023.

[108]
WANG DONGXIAO, LIU QINYAN, QIANG XIE, et al, 2013. Progress of regional oceanography study associated with western boundary current in the South China Sea[J]. Chinese Science Bulletin, 58: 1205-1215.

DOI

[109]
WANG GUIHUA, CHEN DAKE, SU J, 2006b. Generation and life cycle of the dipole in the South China Sea summer circulation[J]. Journal of Geophysical Research, 111(C6): C06002.

[110]
WANG GUIHUA, LI RONGFFENG, YAN CHANGXIANG, 2003. Advances in studying oceanic circulation from hydrographic data with applications in the South China Sea[J]. Advances in Atmospheric Sciences, 20: 194-200.

[111]
WANG QIANG, ZENG LILI, SHU YEQIANG, et al, 2020. Interannual variability of South China Sea winter circulation: response to Luzon Strait transport and El Niño wind[J]. Climate Dynamics, 54: 1145-1159.

DOI

[112]
WANG TONGYU, ZHANG SHUWEN, 2021. Effect of Summer typhoon Linfa on the Chlorophyll-a Concentration in the Continental Shelf Region of Northern South China Sea[J]. Journal of Marine Science and Engineering, 9(8): 794.

DOI

[113]
WANG XIDONG, WANG CHUNZAI, HAN GUIJUN, 2014a. Effects of tropical cyclones on large-scale circulation and ocean heat transport in the South China Sea[J]. Climate Dynamics, 43: 3351-3366.

DOI

[114]
WANG XIDONG, WANG CHUNZAI, ZHANG LIPING, 2014b. Multidecadal variability of tropical cyclone rapid intensification in the Western North Pacific[J]. Journal of Climate, 28(9): 3806-3820.

DOI

[115]
WANG X, ZHOU W, LI C, et al, 2012. Effects of the East Asian summer monsoon on tropical cyclone genesis over the South China Sea on interdecadal time scales[J]. Advances in Atmospheric Science, 29: 249-262.

DOI

[116]
WANG YONGGANG, FANG GUODONG, WEI ZEXUN, et al, 2006c. Interannual variation of the South China Sea circulation and its relation to El Niño, as seen from a variable grid global ocean model[J]. Journal of Geophysical Research, 111: C11S14.

[117]
WU C, 2013. Interannual modulation of the Pacific Decadal Oscillation (PDO) on the low-latitude western North Pacific[J]. Progress in Oceanography 110, 49-58.

[118]
WU C, CHANG C, 2005. Interannual variability of the South China Sea in a data assimilation model[J]. Geophysical Research Letter, 32(17): L1761

[119]
WU C, CHIANG T, 2007. Mesoscale eddies in the northern South China Sea[J]. Deep Sea Research Ⅱ, 54 (14-15): 1575-1588.

[120]
WU C, HSIN Y, 2012. The forcing mechanism leading to the kuroshio intrusion into the South China Sea[J]. Journal of Geophysical Research, 117(C7): C07015.

[121]
WU LIGUANG, WANG CHAO, WANG BIN, 2015. Westward shift of western North Pacific tropical cyclogenesis[J]. Geophysical Research Letter, 42(5): 1537-1542.

DOI

[122]
XIAO FUAN, WANG DONGXIAO, YANG LEI, 2020. Can Tropical pacific winds enhance the Footprint of the Interdecadal Pacific Oscillation on the Upper-Ocean Heat Content in the South China Sea?[J]. Journal of Climate, 33(10): 4419-4437.

DOI

[123]
XIAO XIANJUN, WANG DONGXIAO, ZHOU WEN, et al, 2013. Impacts of a wind stress and a buoyancy flux on the seasonal variation of mixing layer depth in the South China Sea[J]. Acta Oceanologica Sinica, 32: 30-37.

DOI

[124]
XIU PENG, CHAI FEI, SHI LEI, et al, 2010. A census of eddy activities in the South China Sea during 1993-2007[J]. Journal of Geophysical Research 115(C3): C03012.

[125]
XU JIANPING, SU JULAN, 2000. Hydrological analysis of Kuroshio water intrusion into the South China Sea[J]. Acta Oceanologica Sinica, 19(3): 1-21.

[126]
XUE HUIJIE, CHAI FEI, PETTIGREW N, et al, 2004. Kuroshio intrusion and the circulation in the South China Sea[J]. Journal of Geophysical Research, 109(C2): C02017.

[127]
YAN YOUFANG, QI YIQUAN, ZHOU WEN, 2012. Variability of tropical cyclone occurrence date in the South China Sea and its relationship with SST warming[J]. Dynamics of Atmospheres and Oceans, 55-56: 45-59.

[128]
YANG HAIYUAN, WU LIXIN, 2012. Trends of upper-layer circulation in the South China Sea during 1959-2008[J]. Journal of Geophysical Research, 117(C8): C08037.

[129]
YANG LEI, DU YAN, WANG DONGXIAO, et al, 2015. Impact of intraseasonal oscillation on the tropical cyclone track in the South China Sea[J]. Climate Dynamics, 44: 1505-1519

DOI

[130]
YANG LEI, LUO XI, CHEN SHENG, et al, 2022. Characteristics of rapidly intensifying tropical cyclones in the South China Sea, 1980-2016[J]. Advances in Climate Change, 13(3): 333-343.

[131]
YAREMCHUK M, QU TANGDONG, 2004. Seasonal variability of the large-scale currents near the coast of the Philippines[J]. Journal of Physical Oceanography, 34(4): 844-855.

DOI

[132]
YUAN DONGLIANG, 2002. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport[J]. Acta Oceanologica Sinica, 21(2): 187-202.

[133]
YUAN DONGLIANG, HAN WEIQING, HU DUNXIN, 2006. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data[J]. Journal of Geophysical Research, 111(C11): C11007. doi:10.1029/2005JC003412.

DOI

[134]
YUAN DONGLIANG, WANG ZHENG, 2011. Hysteresis and dynamics of a western boundary current flowing by a gap forced by impingement of mesoscale eddies[J]. Journal of Physical Oceanography, 41(5): 878-888.

DOI

[135]
YUAN YAOCHU, LIAO GUANGHONG, GUAN WEIBING, et al, 2008. The circulation in the upper and middle layers of the Luzon Strait during spring 2002[J]. Journal of Geophysical Research, 113(C6): C06004.

[136]
YUAN YAOCHU, LIAO GUANGHONG, YANG CHENGHAO, et al, 2014. Summer Kuroshio Intrusion through the Luzon Strait confirmed from observations and a diagnostic model in summer 2009[J]. Progress in Oceanography, 121: 44-59.

DOI

[137]
ZENG LILI, CHASSIGNET E, SCHMITT R, et al, 2018. Salinification in the South China Sea since late 2012: a reversal of the freshening since 1990s[J]. Geophysical Research Letters, 45(6): 2744-2751.

DOI

[138]
ZENG LILI, LIU W, XUE HUIJIE, et al, 2014. Freshening in the South China Sea during 2012 revealed by Aquarius and in situ data[J]. Journal of Geophysical Research, 119(12): 8296-8314.

[139]
ZHAO RUIXING, ZHU XIAOHUA, 2016. Weakest winter South China Sea western boundary current caused by the 2015-2016 El Niño event[J]. Journal of Geophysical Research, 121(10): 7673-7682.

[140]
ZU TINGTING, XUE HUIJIE, WANG DONGXIAO, et al, 2019. Interannual variation of the South China Sea circulation during winter: intensified in the southern basin[J]. Climate Dynamics, 52(3-4): 1917-1933.

DOI

Outlines

/