Journal of Tropical Oceanography >
Spatial-temporal variations in tide-river dynamics of typical transverse channel in the Pearl River channel networks——Taking the ‘Nansha-Nanhua’ transverse channel as an example
Copy editor: YAO Yantao
Received date: 2022-07-20
Revised date: 2022-08-23
Online published: 2022-08-30
Supported by
National Natural Science Foundation of China(51979296)
National Natural Science Foundation of China(52279080)
Science and Technology Plan Project of Guangzhou, China(202002030452)
The transverse channel plays an indispensable role in the maintenance of dynamic equilibrium of the Pearl River channel networks. Therefore, studying the spatial-temporal variations in river-tide dynamics has important implications for flood control, water supply and navigation in the Guangdong-Hong Kong-Macao Greater Bay Area. Based on the high and low water level series observed at tidal gauging stations along the typical transverse channel (i.e., ‘Nansha-Nanhua’ reach) and the daily averaged river discharge series observed at Makou and Sanshui hydrological stations from 1966 to 2016, the double cumulative curve method and the T_TIDE tidal harmonic analysis model were adopted to quantify the spatial-temporal variations in tide-river dynamics in the transverse channel. The results show that the tide-river dynamics in the transverse channel changed considerably in 1993, the annual mean absolute value of the tidal amplitude gradient and the annual mean value of the residual water level slope decrease by 25% and 38%, respectively; the tidal dynamics in the Nansha station at the estuary mouth weakens (the amplitudes of M2 and K1 constituent decreased by 0.01 m and 0.02 m on average, respectively), while the tidal dynamics at other stations enhanced after 1993. Meanwhile, the tidal damping effect slightly increased in the central reach, but decreased in both the upstream and downstream reaches, in which the alteration is more significant in summer than that in winter. This suggests that the dependence of the tidal amplitude gradients of two main constituents on the river discharge is significantly decreased. The phenomenon mentioned above can be mainly attributed to the nonlinear cumulative influence of natural changes and human activities. On the one hand, the combined influences of intensive reclamation and waterway regulation near the estuary mouth lead the rapid extension of the estuary mouth, which can result in an increase in the friction for tidal wave propagation. On the other hand, the intensive sand excavation in the upper reaches of the transverse channel results in a substantial deepening of the river bed, reducing the friction for tidal wave propagation. In addition, the seasonal dynamics can be primarily attributed to the seasonal variations in river discharge and sea water level. Moreover, it is expected that the fundamental regime of river flow debouching and tidal discharge storage of the transverse channel system change, leading to a reduced flood risk together with an enhanced tidal hydrodynamics.
QIU Xiufang , LI Bo , WANG Bozhi , GU Junhao , WANG Jisi , SU Yanan , CAI Huayang . Spatial-temporal variations in tide-river dynamics of typical transverse channel in the Pearl River channel networks——Taking the ‘Nansha-Nanhua’ transverse channel as an example[J]. Journal of Tropical Oceanography, 2023 , 42(4) : 77 -90 . DOI: 10.11978/2022160
表 1 T_TIDE提取的各站点四大分潮的平均振幅(单位: m)Tab. 1 The main tidal amplitudes at each station of the ‘Nansha-Nanhua’ transverse channel (unit: m) |
站点 | M2 | K1 | O1 | S2 |
---|---|---|---|---|
南沙 | 0.53 | 0.38 | 0.29 | 0.21 |
板沙尾 | 0.40 | 0.30 | 0.24 | 0.16 |
容奇 | 0.34 | 0.27 | 0.21 | 0.14 |
南华 | 0.18 | 0.19 | 0.15 | 0.08 |
图2 “南沙—南华”横向汊道年均径潮动力特征参数与马口和三水年均流量之和的双累积关系a. 年均潮波振幅梯度绝对值; b. 年均余水位梯度 Fig. 2 Double mass curves between the typical dynamic variables of the ‘Nansha-Nanhua’ transverse channel and the sum of the river discharge observed at the Makou and Sanshui hydrological stations. (a) Absolute value of the tidal amplitude gradient; (b) residual water level gradient |
图3 “南沙—南华”横向汊道T_TIDE模型重构水位与同时段的实测水位的对比Fig. 3 The comparison between the reconstructed water levels derived from the T_TIDE model and the measured water levels of the ‘Nansha-Nanhua’ transverse channel |
表2 “南沙—南华”横向汊道各站点重构水位与实测水位的均方根误差与相关指数Tab. 2 The root mean square error and correlation coefficient of the reconstructed and the measured water levels at each station of the ‘Nansha-Nanhua’ transverse channel |
参数 | 南沙 | 板沙尾 | 容奇 | 南华 |
---|---|---|---|---|
均方根误差/m | 0.20 | 0.24 | 0.28 | 0.43 |
相关指数 | 0.94 | 0.91 | 0.89 | 0.88 |
图4 强人类活动前后“南沙—南华”横向汊道沿程各潮位站主要分潮潮波振幅的季节性变化a~d: M2分潮; e~h: K1分潮 Fig. 4 Seasonal variations of the main tidal amplitudes in the ‘Nansha-Nanhua’ transverse channel before and after the intensive human interventions. (a)~(d) M2 constituent; (e)~(h) K1 constituent |
表3 1993年前后“南沙—南华”横向汊道沿程各潮位站的分潮振幅及其变化量Tab. 3 Amplitude changes of the ‘Nansha-Nanhua’ transverse channel before and after the intensive human interventions |
河段 | 分潮 | 时期 | 分潮振幅/m | ||||
---|---|---|---|---|---|---|---|
春 | 夏 | 秋 | 冬 | 年均 | |||
南沙 | M2 | 1966—1993年 | 0.53 | 0.54 | 0.55 | 0.50 | 0.53 |
1994—2016年 | 0.53 | 0.51 | 0.54 | 0.50 | 0.52 | ||
变化量 | -0.01 | -0.03 | -0.01 | 0.00 | -0.01 | ||
K1 | 1966—1993年 | 0.34 | 0.39 | 0.37 | 0.45 | 0.39 | |
1994—2016年 | 0.32 | 0.37 | 0.35 | 0.42 | 0.34 | ||
变化量 | -0.03 | -0.02 | -0.03 | -0.02 | -0.02 | ||
板沙尾 | M2 | 1966—1993年 | 0.39 | 0.34 | 0.41 | 0.41 | 0.39 |
1994—2016年 | 0.43 | 0.37 | 0.44 | 0.43 | 0.42 | ||
变化量 | 0.04 | 0.03 | 0.03 | 0.02 | 0.03 | ||
K1 | 1966—1993年 | 0.27 | 0.29 | 0.29 | 0.36 | 0.30 | |
1994—2016年 | 0.27 | 0.30 | 0.29 | 0.36 | 0.31 | ||
变化量 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | ||
容奇 | M2 | 1966—1993年 | 0.33 | 0.26 | 0.36 | 0.37 | 0.33 |
1994—2016年 | 0.36 | 0.29 | 0.38 | 0.37 | 0.35 | ||
变化量 | 0.03 | 0.03 | 0.02 | 0.00 | 0.02 | ||
K1 | 1966—1993年 | 0.24 | 0.25 | 0.26 | 0.32 | 0.27 | |
1994—2016年 | 0.24 | 0.26 | 0.26 | 0.32 | 0.27 | ||
变化量 | 0.00 | 0.01 | -0.01 | 0.00 | 0.00 | ||
南华 | M2 | 1966—1993年 | 0.53 | 0.54 | 0.55 | 0.50 | 0.53 |
1994—2016年 | 0.53 | 0.51 | 0.54 | 0.50 | 0.52 | ||
变化量 | -0.01 | -0.03 | -0.01 | 0.00 | -0.01 | ||
K1 | 1966—1993年 | 0.34 | 0.39 | 0.37 | 0.45 | 0.39 | |
1994—2016年 | 0.32 | 0.37 | 0.35 | 0.42 | 0.34 | ||
变化量 | -0.03 | -0.02 | -0.03 | -0.02 | -0.02 |
图5 1993年前后“南沙—南华”横向汊道沿程不同河段分潮潮波振幅梯度绝对值(|δ|)的季节性变化a~d: M2分潮; e~h: K1分潮 Fig. 5 Seasonal variations of the absolute value of the tidal amplitude gradient (|δ|) in the ‘Nansha-Nanhua’ transverse channel before and after the intensive human interventions. (a)~(d) M2 constituent; (e)~(h) K1 constituent |
图6 “南沙—南华”横向汊道沿程各河段M2分潮潮波振幅梯度绝对值(|δ|)与马口、三水流量之和(Q)双累积曲线的季节性变化a~d: 南沙—南华河段; e~h: 南沙—板沙尾河段; i~l: 板沙尾—容奇河段; m~p: 容奇—南华河段 Fig. 6 Seasonal variations of double mass curve between the absolute value of the M2 tidal amplitude gradient (|δ|) and the sum of the river discharges (Q) observed at the Makou and Sanshui hydrological stations. (a)~(d) Nansha-Nanhua; (e)~(h) Nansha-Banshawei; (i)~(l) Banshawei-Rongqi; (m)~(p) Rongqi-Nanhua |
图7 “南沙—南华”横向汊道沿程各河段K1分潮潮波振幅梯度绝对值(|δ|)与马口、三水流量之和(Q)双累积曲线的季节性变化a~d: 南沙—南华河段; e~h: 南沙—板沙尾河段; i~l: 板沙尾—容奇河段; m~p: 容奇—南华河段 Fig. 7 Seasonal variations of double mass curve between the absolute value of the K1 tidal amplitude gradient (|δ|) and the sum of the river discharges (Q) observed at the Makou and Sanshui hydrological stations: (a)~(d) Nansha-Nanhua; (e)~(h) Nansha-Banshawei; (i)~(l) Banshawei-Rongqi; (m)~(p) Rongqi-Nanhua |
表4 “南沙—南华”横向汊道两大分潮潮波振幅梯度绝对值与马口、三水流量之和双累积曲线斜率及其变化值的季节性差异Tab. 4 Seasonal variations of double mass curve slope between the absolute value of the tidal amplitude gradient of main constituents and the sum of the river discharges observed at the Makou and Sanshui hydrological stations |
河段 | 分潮 | 时期 | 双累积曲线斜率 | ||||
---|---|---|---|---|---|---|---|
春 | 夏 | 秋 | 冬 | 年均 | |||
南沙—南华 | M2 | 1966—1993年 | 1.33 | 1.09 | 1.38 | 2.29 | 1.52 |
1994—2016年 | 0.86 | 0.75 | 1 | 1.14 | 0.94 | ||
变化量 | -0.47 | -0.34 | -0.38 | -1.15 | -0.59 | ||
K1 | 1966—1993年 | 1.21 | 1.03 | 1.23 | 3.13 | 1.65 | |
1994—2016年 | 0.87 | 0.81 | 1.03 | 2.15 | 1.22 | ||
变化量 | -0.34 | -0.22 | -0.2 | -0.98 | -0.44 | ||
南沙—板沙尾 | M2 | 1966—1993年 | 1.43 | 1.14 | 1.47 | 2.75 | 1.70 |
1994—2016年 | 1.12 | 0.89 | 1.26 | 1.81 | 1.27 | ||
变化量 | -0.31 | -0.25 | -0.21 | -0.94 | -0.43 | ||
K1 | 1966—1993年 | 1.07 | 0.88 | 1.14 | 2.9 | 1.50 | |
1994—2016年 | 0.67 | 0.66 | 0.93 | 1.87 | 1.03 | ||
变化量 | -0.4 | -0.22 | -0.21 | -1.03 | -0.47 | ||
板沙尾—容奇 | M2 | 1966—1993年 | 1.49 | 1.15 | 1.56 | 3.08 | 1.82 |
1994—2016年 | 1.65 | 1.15 | 1.85 | 3.09 | 1.94 | ||
变化量 | 0.16 | 0 | 0.29 | 0.01 | 0.12 | ||
K1 | 1966—1993年 | 1.26 | 1.01 | 1.31 | 3.56 | 1.79 | |
1994—2016年 | 1.34 | 1.02 | 1.57 | 3.17 | 1.78 | ||
变化量 | 0.08 | 0.01 | 0.26 | -0.39 | -0.01 | ||
容奇—南华 | M2 | 1966—1993年 | 1.68 | 1.13 | 1.78 | 3.91 | 2.13 |
1994—2016年 | 1.5 | 0.96 | 1.69 | 2.79 | 1.74 | ||
变化量 | -0.18 | -0.17 | -0.09 | -1.12 | -0.39 | ||
K1 | 1966—1993 | 1.53 | 1.2 | 1.59 | 3.64 | 1.99 | |
1994—2016 | 1.31 | 1 | 1.41 | 2.65 | 1.59 | ||
变化量 | -0.22 | -0.2 | -0.18 | -0.99 | -0.40 |
[1] |
陈小齐, 余明辉, 刘长杰, 等, 2020. 珠江三角洲近年地形不均匀变化对洪季水动力特征的影响[J]. 水科学进展, 31(1): 81-90.
|
[2] |
戴清, 2007. 河道演变机理及其成因分析系统探讨[J]. 泥沙研究, (5): 54-59.
|
[3] |
何为, 2012. 珠江河口分汊机制及其对排洪和咸潮上溯的影响[D]. 上海: 华东师范大学.
|
[4] |
蒋陈娟, 周佳楠, 杨清书, 2020. 珠江磨刀门河口潮汐动力变化对人类活动的响应[J]. 热带海洋学报, 39(6): 66-76.
|
[5] |
李博, 杨昊, 欧素英, 等, 2022. 珠江磨刀门河口潮波振幅梯度与上下游动力边界的关系异变研究[J]. 海洋与湖沼, 53(3): 513-527.
|
[6] |
李春初, 雷亚平, 何为, 等, 2002. 珠江河口演变规律及治理利用问题[J]. 泥沙研究, (3): 44-51.
|
[7] |
李静, 2006. 珠江三角洲网河近20年河床演变特征分析[J]. 水利水电科技进展, 26(3): 15-17.
|
[8] |
罗章仁, 2004. 人类活动引起的珠江三角洲网河和河口效应[J]. 海洋地质动态, 20(7): 35-36 (in Chinese).
|
[9] |
马玉婷, 蔡华阳, 杨昊, 等, 2022. 珠江磨刀门河口水位分布演变特征及其对人类活动的响应[J]. 热带海洋学报, 41(2): 52-64.
|
[10] |
穆兴民, 张秀勤, 高鹏, 等, 2010. 双累积曲线方法理论及在水文气象领域应用中应注意的问题[J]. 水文, 30(4): 47-51.
|
[11] |
彭静, 何少苓, 廖文根, 等, 2003. 珠江三角洲大系统洪水模拟分析及防洪对策探讨[J]. 水利学报, 34(11): 78-84.
|
[12] |
王博芝, 杨昊, 欧素英, 等, 2021. 珠江河网横向汊道水面线演变过程及原因探讨——以东平水道为例[J]. 热带地理, 41(2): 410-422.
|
[13] |
谢洋, 2015. 海平面上升对珠江口风暴潮增水和波浪的影响研究[D]. 南京: 东南大学.
|
[14] |
颜云峰, 左军成, 陈美香, 2010. 海平面长期变化对东中国海潮波的影响[J]. 中国海洋大学学报: 自然科学版, (11): 19-28.
|
[15] |
杨易, 贺涛, 2021. 近年珠江三角洲洪季余水位和潮差的演变特征研究[J]. 中国农村水利水电, (7): 19-23.
|
[16] |
张萍, 谢梅芳, 杨昊, 等, 2020. 潮优型河口动力对水深变化的响应机制研究——以葡萄牙Guadiana河口为例[J]. 热带海洋学报, 39(1): 1-11.
|
[17] |
张蔚, 严以新, 郑金海, 等, 2010. 珠江三角洲年际潮差长期变化趋势[J]. 水科学进展, 21(1): 77-83.
|
[18] |
张先毅, 杨昊, 黄竞争, 等, 2020. 强人类活动驱动下珠江磨刀门河口径潮动力的季节性异变特征[J]. 海洋与湖沼, 51(5): 1043-1054.
|
[19] |
赵荻能, 2017. 珠江河口三角洲近165年演变及对人类活动响应研究[D]. 杭州: 浙江大学.
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
/
〈 | 〉 |