Journal of Tropical Oceanography >
Recent research advances on multi-scale coastal wave and current characteristics of coral reefs and islands
Copy editor: LIN Qiang
Received date: 2021-01-08
Request revised date: 2021-02-21
Online published: 2021-02-21
Supported by
National Science Fund for Distinguished Young Scholars(51425901)
Copyright
The coasts of coral reefs and islands are characterized with very complex wave-current dynamics, unique morphology and largely unknown engineering responses, where wave transformation and wave-induced currents have significant impacts on the infrastructure safety, morphological evolution, disaster prevention, and eco-environmental protection. Recent research advances on these topics are reviewed with respect to three spatial scales, e.g., the large-scale long-wave guiding and trapping, the medium-scale hydrodynamics in a reef-lagoon-channel system, and the local wave-structure interaction. This paper includes the descriptions of, specifically, theoretical findings of guided and trapped waves over ocean ridges and around reef islands, two-dimensional horizontal wave basin experiment of a reef-lagoon-channel system, and new methods to estimate wave overtopping and forces on the seawall based on a large-scale wave flume experiment. Further research prospects are also suggested.
ZHENG Jinhai , SHI Jian , CHEN Songgui . Recent research advances on multi-scale coastal wave and current characteristics of coral reefs and islands[J]. Journal of Tropical Oceanography, 2021 , 40(3) : 44 -56 . DOI: 10.11978/YG2020013
图1 周期T=300s、地形参数λ=0.00009m-1、脊顶水深h0=80m对应的前四个模态奇偶俘获波波幅沿海脊剖面分布Fig. 1 Normalized wave profiles corresponding to T = 300 s, λ = 0.00009 m-1, and h0 = 80 m for the first four modes over the ridge |
图3 不同岛礁半径的射线路径分布图与波振幅分布(Zheng et al, 2017)Fig. 3 The wave rays and amplitude around the islands and reefs with different coastal radius. After Zheng et al (2017) |
图4 珊瑚礁海岸的近岸环流(Lowe et al, 2015)msl为平均海平面; qr为礁坪向岸流; qc为裂口离岸流; η(x)指波浪增水 Fig. 4 Nearshore circulation around the coral reef. After Lowe et al (2015) |
图5 礁坪-潟湖-裂口系统的整体物理模型试验布置图Fig. 5 Sketch of the 2DH reef-lagoon-channel system in the wave-current basin |
图6 礁坪-潟湖-裂口系统中的波高和增水分布(Zheng et al, 2020)H0为入射波高, T为入射波浪周期, hr为礁坪水深 Fig. 6 Variations of wave height and mean sea level in the reef-lagoon-channel system. After Zheng et al (2020) |
图7 礁坪-潟湖-裂口系统中的波生流分布(Zheng et al, 2020)Fig. 7 Wave-driven horizonal currents in the reef-lagoon- channel system. After Zheng et al (2020) |
图8 不同模型相位速度与理论值对比(Wang et al, 2019)绿色线为新非静压波浪模型 Fig. 8 Comparison of phase speed values from different models and wave theory. The green line is the result given by the new non-hydrostatic model. After Wang et al (2019) |
图9 珊瑚礁地形上波浪破碎紊动动能的非静压模拟结果(Shi et al, 2018)Fig. 9 Snapshots of instantaneous turbulent intensity for wave breaking on reef flat simulated by NHWAVE model. After Shi et al (2018) |
图10 珊瑚礁海岸波浪浅水变形系数Ks(H′/H0)与相对水深(d/L0)的关系(陈松贵 等, 2018)H′、H0分别为测点波高与入射波高; d为水位值, L0为入射波长 Fig. 10 Relationship between wave deformation coefficient Ks in shallow water and relative water depth. After Chen et al (2018) |
图11 珊瑚礁地形上不同位置的波谱 (陈松贵 等, 2018)Fig. 11 Wave spectrum at different locations of a coral reef. After Chen et al (2018) |
图12 珊瑚礁地形上直立式防浪堤越浪大水槽实验Fig. 12 Experiment on wave overtopping of a vertical seawall on coral reefs in large wave flume |
图13 相对干舷高度对考虑了距离、周期和水深的无量纲平均越浪量的影响(陈松贵 等, 2019b)Fig. 13 Effect of relative freeboard height on dimensionless mean overtopping discharge considering the influences of distance, period and water depth. After Chen et al (2019b) |
图14 不同组次的珊瑚礁海岸防浪建筑物胸墙最大波压强(单位: kPa)分布 (陈松贵 等, 2019c)Fig. 14 Distribution of maximum wave pressure (units: kPa) on the seawall over a coral reef coast. After Chen et al (2019c) |
[1] |
陈松贵, 张华庆, 陈汉宝, 等, 2018. 不规则波在筑堤珊瑚礁上传播的大水槽实验研究[J]. 海洋通报, 37(5):576-582.
|
[2] |
陈松贵, 郑金海, 王泽明, 等, 2019a. 珊瑚岛礁护岸对礁坪上极端波浪传播特性的影响[J]. 水利水运工程学报, (6):59-68.
|
[3] |
陈松贵, 王泽明, 张弛, 等, 2019b. 珊瑚礁地形上直立式防浪堤越浪大水槽实验[J]. 科学通报, 64(28-29):3049-3058.
|
[4] |
陈松贵, 陈汉宝, 赵洪波, 等, 2019c. 珊瑚礁地形上胸墙波浪力大水槽试验[J]. 河海大学学报(自然科学版), 47(1):65-70.
|
[5] |
傅丹娟, 2017. 长波在岛屿及海底山上传播变形的解析研究[D]. 南京: 河海大学: 1-125.
|
[6] |
琚烈红, 2004. 典型胸墙的波浪力和越浪量物理模型试验与分析[D]. 南京: 南京水利科学研究院: 1-78.
|
[7] |
柳玉良, 韩炳辰, 李玉龙, 2010. 斜坡式防波堤护面对胸墙波浪力的影响[J]. 水运工程, (8):36-38.
|
[8] |
梅弢, 高峰, 2013. 波浪在珊瑚礁坪上传播的水槽试验研究[J]. 水道港口, 34(1):13-18.
|
[9] |
时健, 郑金海, 严以新, 等, 2017. 河口海岸水动力非静压数学模型研究述评[J]. 河海大学学报(自然科学版), 45(2):167-174.
|
[10] |
孙家文, 房克照, 何栋彬, 等, 2018. 岛礁海域的近岸水动力特性研究进展[J]. 水道港口, 39(4):402-409.
|
[11] |
王岗, 郑金海, 2015. 非静压波浪模型新理论[C]//第十七届中国海洋(岸)工程学术讨论会论文集(下). 北京: 海洋出版社: 763-772.
|
[12] |
王颖, 薛雷平, 刘桦, 2007. 弧形防浪墙波浪力的试验研究[J]. 水道港口, 28(2):81-85.
|
[13] |
姚宇, 袁万成, 杜睿超, 等, 2015. 岸礁礁冠对波浪传播变形及增水影响的实验研究[J]. 热带海洋学报, 34(6):19-25.
|
[14] |
姚宇, 2019. 珊瑚礁海岸水动力学问题研究综述[J]. 水科学进展, 30(1):139-152.
|
[15] |
张庆河, 刘海青, 赵子丹, 1999. 波浪在台阶地形上的破碎[J]. 天津大学学报, 32(2):204-207.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
/
〈 | 〉 |