Journal of Tropical Oceanography >
The evolution and energy characteristics of the Sri Lanka Dome*
Received date: 2022-12-23
Revised date: 2023-04-04
Online published: 2023-04-17
Supported by
National Key R&D Program of China(2022YFE0203500)
National Natural Science Foundation of China(91958202)
Development Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences(SCSIO202201)
Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences(ISEE2021ZD01)
This study systematically investigates the evolution and energy characteristics of the climatic Sri Lanka Dome (SLD) using hybrid coordinate ocean model (HYCOM) and National Centers for Environmental Prediction (NCEP) reanalysis datasets. The results show that the SLD undergoes two peaks of intensity and eddy kinetic energy (EKE) during its lifecycle. During the first development stage (May 23 to June 10), SLD shifts from the southeast to the east of Sri Lanka, and its area gets wider while its intensity gets stronger. The strengthening of the SLD is attributed to a combination of wind stress work, eddy-mean flow interaction, and advection of the southwest monsoon current (SMC). During the mature stage (June 11 to 22), when the SLD is located to the east of Sri Lanka, the EKE and eddy available potential energy (EPE) in the SLD region reaches its first peak due to enhanced wind stress work and eddy-mean flow interaction. During the weakening stage (June 23 to July 20), the SLD moves northwestward and loses EKE and EPE due to the dissipation of the advection term, reduction of wind stress work and baroclinic instability. During the stable stage (July 21 to August 14), the SLD shifts to the northeast of Sri Lanka, with weaker wind stress work, pressure work, and eddy-mean flow interaction, which keeps the strength of the SLD at a weak level. During the second development stage (August 15 to 25), the SLD moves northward with increased intensity, mainly due to enhanced wind stress and pressure work. During the decay stage (August 26 to September 5), the process of ocean internal instability transforms EKE and EPE into mean flow energy, weakening the SLD. In summary, wind stress work, eddy-mean flow interaction, pressure work, and the advection of SMC are all essential factors in the evolution of SLD.
MA Yu , WANG Weiqiang , YOU Qinglong , XIN Hongyu . The evolution and energy characteristics of the Sri Lanka Dome*[J]. Journal of Tropical Oceanography, 2023 , 42(5) : 1 -16 . DOI: 10.11978/2022260
图1 1994—2015年5—10月海表面高度异常(a、b、c)和地转涡动能(d、e、f)的气候态空间分布a、b、c为海表面高度异常的气候态空间分布, 分别由CMEMS、HYCOM和过滤后的HYCOM数据制作得到, 黑色箭头表示地转流异常, 填色表示海表面高度异常; d、e、f为地转涡动能的气候态空间分布, 分别由CMEMS、HYCOM和过滤后的HYCOM数据制作得到, 填色表示地转涡动能 Fig. 1 Averaged horizontal distribution of sea surface height anomalies (a, b, c) and surface geostrophic eddy kinetic energy (d, e, f) from May to October, 1994 to 2015. The averaged spatial distribution of sea surface height anomalies (a, b, c), obtained from CMEMS, HYCOM, and spatially filtered HYCOM data, respectively. The black arrows represent geostrophic current anomalies, while the shading represents the sea surface height anomalies. The averaged spatial distribution of surface geostrophic eddy kinetic energy (d, e, f) is also presented, generated from CMEMS, HYCOM, and spatially filtered HYCOM data, respectively. The shading represents surface geostrophic eddy kinetic energy |
图3 能量转化示意图(仅展示与EKE和EPE相关的能量转换项)MKE为平均流动能; MPE为平均可用势能; EKE为涡动能; EPE为涡势能; BTC (BTC1+BTC2)为正压转换项; BCC (BCC1+BCC2)为斜压MPE→EPE转换项; VEDF为斜压EPE→EKE转换项; $\text{AD}{{\text{V}}_{\text{k}}}$ 为EKE平流项; PW为压强做功项; ${{\text{F}}_{\text{k}}}$为风应力做功项; ${{\text{D}}_{\text{k}}}$为EKE耗散项; $\text{AD}{{\text{V}}_{\text{p}}}$为EPE平流项; ${{\text{F}}_{\text{p}}}$和${{\text{D}}_{\text{p}}}$表示热通量、淡水通量以及垂直混合等对EPE的贡献 Fig. 3 Schematic diagram of energy conversion. Only the energy conversion terms related to EKE and EPE are shown |
图4 SLD的面积(a)、振幅(b)和涡度(c)的时间序列和SLD的移动轨迹图(d)图d中蓝色和红色线分别为HYCOM和CMEMS识别出的SLD的轨迹, 日期分别为SLD的生成和消亡时间; CMEMS资料识别出的SLD产生于5月18日, 消亡于9月6日, HYCOM再分析资料识别出的SLD产生于5月23日, 消亡于9月5日 Fig. 4 Time series of the SLD’s area (a), amplitude (b), vorticity (c), as well as its trajectory (d). The blue and red lines in d are the trajectories of the SLD identified by HYCOM and CMEMS, respectively. The blue and red dates are the generation and extinction times of the SLD. The CMEMS-found SLD first forms on May 18 and decays on September 6, and the HYCOM-found SLD first forms on May 23 and decays on September 5 |
图6 SLD区域EKE的时间序列SLD区域上层200m体积积分EKE的时间序列; FDVS、MS、WS、SS和SDVS、DCS分别表示SLD的第一次发展阶段、成熟阶段、减弱阶段、稳定阶段、第二次发展阶段和消亡阶段。黑色虚线表示EKE的标准差, 红色虚线表示各阶段分界线 Fig. 6 The time series of volume-integrated (0~200 m) EKE in the SLD region. FDVS, MS, WS, SS, SDVS and DCS represent the first development stage, mature stage, weakening stage, stable stage, second development stage and decay stage of SLD, respectively. The black dashed line indicates the standard deviation of EKE, and the red dotted line indicates the dividing line between the stages |
图7 在SLD的第一次发展阶段(a1~a2)、成熟阶段(b1~b2)、减弱阶段(c1~c2)、稳定阶段(d1~d2)和第二次发展阶段(e1~e2)、消亡阶段(f1~f2), 密度异常沿SLD中心所在经度(a1~f1)和纬度(a2~f2)的垂向分布图图中均为对应阶段的平均值, 其中填色表示密度异常; 等值线分别表示纬向流速异常(a1~f1)和经向流速异常(a2~f2), 间隔0.1m·s-1, 实线表示正值, 虚线表示负值; 灰色阴影为SLD区域 Fig. 7 The vertical profiles of density anomaly along the longitude (a1~f1) and latitude (a2~f2) of the SLD’s center during the first development stage (a1~a2), mature stage (b1~b2), weakening stage (c1~c2), stable stage (d1~d2), second development stage (e1~e2) and decay stage (f1~f2) of the SLD. The mean values for the corresponding stages are shown, where the shading indicates density anomaly. The black contours indicate the zonal current anomaly (a1~f1) and meridional current anomaly (a2~f2) respectively, with a spacing of 0.1 m·s-1, the solid lines represent positive values, while the dashed lines represent negative values. The SLD region is shaded in gray |
图8 在SLD的第一次发展阶段(a1~a3)、成熟阶段(b1~b3)、减弱阶段(c1~c3)、稳定阶段(d1~d3)和第二次发展阶段(e1~e3)、消亡阶段(f1~f3), 深度分别为10m (a1~f1)、150m (a2~f2)和350m (a3~f3)处海温(单位: ℃)和盐度(单位: ‰)的空间分布图中均为对应阶段的平均值, 其中填色表示海温, 绿色闭合等值线表示SLD, 红色圆点表示SLD中心位置, 黑色等值线为盐度, 加粗黑色等值线在10m深度表示34.4‰的盐度等值线, 在150m深度表示34.92‰的盐度等值线 Fig. 8 Spatial distribution of temperature (unit: ℃) and salinity (unit: ‰) in the first development stage (a1~a3), mature stage (b1~b3), weakening stage (c1~c3), stable stage (d1~d3), second development stage (e1~e3) and decay stage (f1~f3) of the SLD at depths of 10 m (a1~f1), 150 m (a2~f2) and 350 m (a3~f3), respectively. The mean values of the corresponding stages are shown in the figure, where the shading indicates temperature, the green closed contour indicates SLD, the red dots indicate the SLD centers, and the black contour is salinity. The thickened black contour at 10 m depth indicates a 34.4‰ salinity contour, and at 150 m depth, a 34.92‰ salinity contour |
图9 在5月23日(a、c)和6月10日(b、d) EKE (a、b)和EPE (c、d)的空间分布EKE和EPE为海洋上层200m垂向积分的结果; 绿色闭合等值线表示SLD, 黑色箭头为地转流, 为充分刻画SMC主轴, 图中仅绘出流速大于0.2m·s-1部分 Fig. 9 Spatial distribution of depth-integrated (0~200 m) EKE (a, b) and EPE (c, d) on May 23 (a, c) and June 10 (b, d). Green closed contours indicate SLD; black arrows indicate the geostrophic current, and only the part of the velocity greater than 0.2 m·s-1 is plotted in order to fully represent the major axis of SMC |
图10 在SLD的第一次发展阶段(a1~a9)、成熟阶段(b1~b9)、减弱阶段(c1~c9)、稳定阶段(d1~d9)和第二次发展阶段(e1~e9)、消亡阶段(f1~f9)的涡动能(a1~f1)、涡势能(a2~f2)和风应力做功项(a3~f3)、正压转换项(a4~f4)、斜压MPE→EPE转换项(a5~f5)、斜压EPE→EKE转换项(a6~f6)、EKE平流项(a7~f7)、EPE平流项(a8~f8)、压强做功项(a9~f9)的空间分布均为海洋上层200m垂向积分的结果, 绿色闭合等值线表示SLD, 黑色箭头为地转流 Fig. 10 Spatial distribution of depth-integrated (0~200 m) eddy energy: eddy kinetic energy (a1~f1) and eddy available potential energy (a2~f2), energy conversion rate: the wind stress work (a3~f3), the barotropic MKE→EKE conversion (a4~f4), the baroclinic MPE→EPE conversion (a5~f5), the baroclinic EPE→EKE conversion (a6~f6), the EKE advection (a7~f7), the EPE advection (a8~f8) and the pressure work (a9~f9) during the first development stage (a1~a9), mature stage (b1~b9), weakening stage (c1~c9), stable stage (d1~d9), second development stage (e1~e9) and decay stage (f1~f9) of the SLD, with green closed contours indicating SLD and black arrows for the geostrophic current |
图11 成熟阶段的涡旋场能量中涡动能(a1~a2)、涡势能(b1~b2)和能量转换项中正压转换项(c1~c2)、斜压MPE→EPE转换项(d1~d2)、斜压EPE→EKE转换项(e1~e2)、EKE平流项(f1~f2)、EPE平流项(g1~g2)、压强做功项(h1~h2)沿SLD中心所在经度(a1~h1)和纬度(a2~h2)的垂向分布图灰色阴影为SLD区域, 加粗的黑色等值线分别表示5J·m-3和±110-5W·m-3, 实线为正值, 虚线为负值 Fig. 11 Vertical distribution of eddy energy: eddy kinetic energy (a1~a2) and eddy available potential energy (b1~b2), and energy conversion rate: the barotropic MKE→EKE conversion (c1~c2), the baroclinic MPE→EPE conversion (d1~d2), the baroclinic EPE→EKE conversion (e1~e2), the EKE advection (f1~f2), the EPE advection (g1~g2) and the pressure work (h1~h2) along the longitude (a1~f1) and latitude (a2~f2) of the SLD’s center at the mature stage of the SLD. The gray shaded area is the SLD region, and the thickened black contours indicate 5 J·m-3 and ±1 10-5 W·m-3, respectively, the solid lines represent positive values, while the dashed lines represent negative values |
图12 在8月26日(a、c)和9月5日(b、d) EKE (a、b)和EPE (c、d)的空间分布EKE和EPE为海洋上层200m垂向积分的结果; 绿色闭合等值线表示SLD, 黑色箭头为地转流, 为充分刻画SMC主轴, 图中仅绘出流速大于0.2m·s-1部分 Fig. 12 Spatial distribution of depth-integrated (0~200 m) EKE (a, b) and EPE (c, d) on August 26 (a, c) and September 5 (b, d). The closed green contours represent the SLD. The black arrows denote the geostrophic current. Only the part of the velocity greater than 0.2 m·s-1 is plotted in order to effectively depict the major axis of SMC |
图13 SLD区域上层200m体积积分的涡旋场能量(a)和能量转化项(b)在SLD的第一次发展阶段(FDVS)、成熟阶段(MS)、减弱阶段(WS)、稳定阶段(SS)和第二次发展阶段(SDVS)、消亡阶段(DCS)的对比EKE为涡动能; EPE为涡势能; ${{\text{F}}_{\text{k}}}$为风应力做功项; BTC为正压转换项; BCC为斜压MPE→EPE转换项; VEDF为斜压EPE→EKE转换项; $\text{AD}{{\text{V}}_{\text{k}}}$为EKE平流项; $\text{AD}{{\text{V}}_{\text{p}}}$为EPE平流项; PW为压强做功项 Fig. 13 The comparison of volume-integrated (0~200 m) eddy energy (a) and energy conversion terms (b) in the SLD during the first development stage (FDVS), mature stage (MS), weakening stage (WS), stable stage (SS), second development stage (SDVS), and decay stage (DCS). EKE represents the eddy kinetic energy, EPE represents the eddy available potential energy, ${{\text{F}}_{\text{k}}}$ represents the wind stress work, BTC represents the barotropic MKE→EKE conversion, BCC represents the baroclinic MPE→EPE conversion, VEDF represents the baroclinic EPE→EKE conversion through vertical eddy density flux, $\text{AD}{{\text{V}}_{\text{k}}}$ represents the EKE advection, ADVp represents the EPE advection, and PW represents the pressure work |
*感谢中国科学院中国-斯里兰卡联合科教中心提供的帮助。感谢南京信息工程大学的杨洋老师和何蔚邦同学提供的垂向流速的计算程序。
[1] |
杜岩, 张涟漪, 张玉红, 2019. 印度洋热带环流圈热盐输运及其对区域气候模态的影响[J]. 地球科学进展, 34(3): 243-254.
|
[2] |
EKANAYAKA K B S S J, 王卫强, 2019. 斯里兰卡穹顶区的形成和演变机制分析[J]. 南京信息工程大学学报, 11(2): 198-207.
|
[3] |
何蔚邦, 杨洋, 梁湘三, 2022. 斯里兰卡以东海域涡旋偶极子的生成与维持机制[J]. 海洋科学进展, 40(3): 379-398.
|
[4] |
季页, 杨洋, 梁湘三, 2022. 孟加拉湾海域背景流-中尺度涡-高频扰动之间的相互作用[J]. 海洋学报, 44(9): 23-37.
|
[5] |
乐洲, 黄科, MANTRAVADI V S, 2020. 2000—2015年夏秋季孟加拉湾湾口区涡流相互作用能量学特征[J]. 热带海洋学报, 39(2): 11-24.
|
[6] |
邱云, 李立, 周喜武, 2008. 斯里兰卡冷涡及其成因分析[J]. 热带海洋学报, 27(4): 45-51.
|
[7] |
田永青, 邱云, 林新宇, 2022. 阿拉伯海高盐水入侵孟加拉湾的季节形态及动力机制[J]. 应用海洋学学报, 41(1): 100-108.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
/
〈 | 〉 |