Journal of Tropical Oceanography >
Geochemistry of black carbon in marine extreme environments and its environmental implications*
Copy editor: SUN Cuici
Received date: 2023-08-12
Revised date: 2023-09-08
Online published: 2023-11-16
Supported by
National Natural Science Foundation of China(42106059)
Shanghai Sailing Program(21YF1416800)
Shanghai Chenguang Program(22CGA58)
Black carbon is one of the carbonaceous materials, it exists ubiquitously in the environment and could be resistant to oxidation and decomposition. Black carbon might strongly affect the global carbon cycle as an important component of recalcitrant organic carbon. The current discrepancy of marine black carbon budgets indicates that there are unknown sources or buried pathways of black carbon in the ocean. It has been confirmed that marine extreme environments, such as abyssal trenches, hydrothermal vents and cold seeps, may be important sources or sinks of marine black carbon with the continuous deepening of the research on black carbon in these environments. In this review, the geochemical characteristics of black carbon in extreme marine environment are summarized. It is found that the unique “V”-shaped terrain of the abyssal trenches is conducive to the accumulation of materials, in which the black carbon is older than the syn-sedimentary organic carbon, and the annual buried amount of black carbon is about (1.0±0.5) Tg. The high-temperature fluid in hydrothermal vents forms in-situ authigenic black carbon by “burning” organic matter, and its annual contribution to the ocean is about 1.6~9.7Tg, which is an important source of marine black carbon. The source and sink process of black carbon in cold seeps remain unclear, but the high abundance of anaerobic methanotrophic archaea in these areas has recently been proved to directly produce black carbon, and its carbon isotope value is negatively below -60‰. As the only microbial source of black carbon found so far, it is an important supplement to the traditional understanding of black carbon types. The overall framework of marine black carbon source and sink process has been established notwithstanding, there is a lack of direct morphological observation and characterization of black carbon in marine extreme environments. It is necessary to clarify the ratio between terrestrial black carbon input and marine authigenic black carbon in extreme marine environments, to further understand the source and sink process of marine black carbon and explore the role of extreme environmental black carbon in marine black carbon budgets in the future.
LI Dai , WANG Xudong , JIA Zice , FENG Dong . Geochemistry of black carbon in marine extreme environments and its environmental implications*[J]. Journal of Tropical Oceanography, 2024 , 43(4) : 20 -32 . DOI: 10.11978/2023117
图1 黑碳的理化性质与提取方法a.实线为提取方法的适用范围, 虚线代表暂未清楚其适用范围, TOR为热光反射法(thermal-optical reflectance), CTO-375(chemothermal oxidation)为在375℃下热氧化24h, BPCA(benzene polycarboxylic acid)为苯多羧酸分子标志物法; b. 透射电镜(TEM)下的烟炱颗粒; c. 扫描电镜(SEM)下的焦炭/木炭颗粒(据Masiello, 2004; Hammes et al, 2007; Buseck et al, 2012; Bird et al, 2015修改) Fig. 1 Physicochemical properties and extraction methods of black carbon. (a) The solid line shows the range of applicability of the extraction method and the dashed line represents the range of applicability that is not clear yet. TOR is thermal-optical reflectance. CTO-375 is thermal oxidation at 375℃ for 24h. BPCA is benzene polycarboxylic acid molecular marker method; (b) TEM image of soot; (c) SEM image of char (modified from Masiello, 2004; Hammes et al, 2007; Buseck et al, 2012; Bird et al, 2015) |
图2 全球海洋沉积物黑碳含量(干重)汇编该图基于国家测绘地理信息标准地图服务网站下载的审图号为GS(2016)1665号的标准地图制作。数据源自Smith et al, 1973; Griffin et al, 1975; Lim et al, 1996; Gustafsson et al, 1998; Kang et al, 2009; Lohmann et al, 2009; Salvadó et al, 2017; Yang et al, 2018; Ren et al, 2019, 2022; Wu et al, 2019; Dan et al, 2022; Wulandari et al, 2023 Fig. 2 Global compilation of marine sediment black carbon content (data from Smith et al, 1973; Griffin et al, 1975; Lim et al, 1996; Gustafsson et al, 1998; Kang et al, 2009; Lohmann et al, 2009; Salvadó et al, 2017; Yang et al, 2018; Ren et al, 2019, 2022; Wu et al, 2019; Dan et al, 2022; Wulandari et al, 2023) |
图3 海洋黑碳循环a. 黑色数值代表黑碳的年通量(Tg·yr−1), 蓝色数值代表黑碳的总储量(Pg); b. 通过BPCA法提取出的不同类型黑碳的稳定碳同位素(δ13C)值(δ13CVPDB); 高温高压下浓硝酸氧化DBC会形成带有3~6个羧基的苯多酸(BPCA, 即B3CA-B6CA), 苯多酸单体浓度比例会受到DBC结构及来源等因素的影响, 因此苯五多酸(B5CA)和苯六多酸(B6CA)等特定DBC的δ13C值将有助于追踪黑碳的来源和过程; 另外, B6CA:B5CA是常用来表示DBC芳香性程度的指标, 该值越大, DBC芳香性越强(据方仔铭, 2018; Wagner et al, 2019修改) Fig. 3 Marine black carbon cycle. (a) The black value represents the annual flux of black carbon (Tg·yr−1), the blue value represents the total storage of black carbon (Pg); (b) it is the δ13C values representing different types of black carbon extracted by the BPCA method; the oxidation of DBC by concentrated nitric acid under high-temperature and high-pressure conditions results in the formation of benzene polyacid (BPCA, B3CA-B6CA) compounds, which contain 3~6 carboxyl groups; the monomer concentration ratio of benzene polyacid is influenced by the structure and source of DBC; therefore, the stable carbon isotope (δ13C) values of specific DBCs, such as benzene pentapolyacid (B5CA) and benzene hexapolyacid (B6CA), can be utilized to track the origin and formation process of BC; furthermore, the B6CA:B5CA ratio is a widely employed index for assessing the aromaticity of DBC; a higher value of this ratio indicates a greater degree of aromaticity in DBC (modified from Fang, 2018; Wagner et al, 2019) |
图4 海沟沉积物黑碳的地球化学特征该图基于国家测绘地理信息标准地图服务网站下载的审图号为GS(2016)1665号的标准地图制作; a. 饼图面积大小表示各站点TOC含量, 饼图中绿色代表除黑碳外的有机碳含量, 黄色代表黑碳含量(干重), 饼图旁“字母+数字”代表站位号, “数字”代表该站位的TOC含量, 单位为mg·g−1; b. 海沟沉积物黑碳与其他海洋沉积物黑碳的δ13C和Δ14C值(据Zhang et al, 2022修改) Fig. 4 Geochemistry of black carbon in trench sediments. (a) The area of the pie chart indicates the TOC content of each site, green in the pie chart represents the organic carbon content except black carbon, yellow represents the black carbon content, the ‘letter+number’ next to the pie chart represents the station number, and the ‘number’ next to the pie chart represents the TOC content of the station in mg·g−1; (b) cross-plot of δ13C and Δ14C for the black carbon (BC) in trench sediments and other marine sediments (modified from Zhang et al, 2022) |
图5 热液区溶解有机碳变化示意图SPE-DOC (solid phase extraction-dissolved organic carbon) 代表被固相萃取的惰性溶解有机碳, 与周围海水相比, 约94%的SPE-DOC在热液喷口处被清除 (据Hawkes et al, 2015; Niggemann et al, 2016; Dick, 2019修改) Fig. 5 Schematic diagram of dissolved organic carbon changes in the hydrothermal systems. SPE-DOC (solid phase extraction-DOC) represents recalcitrant dissolved organic carbon extracted by solid phase extraction, and about 94% of SPE-DOC is removed at hydrothermal vents compared to surrounding seawater (modified from Hawkes et al, 2015; Niggemann et al, 2016; Dick, 2019) |
图6 a. 冷泉系统碳循环示意图, 硫酸盐-甲烷转换带(sulfate-methane transition zone, SMTZ); b. 甲烷厌氧氧化古菌(ANME)所产生的黑碳、活性碳和石墨的拉曼光谱特征; c、d: 黑色小球状物质为ANME所产生的黑碳(据Boetius et al, 2013; Allen et al, 2021修改)Fig. 6 (a) Carbon cycle of cold seeps, sulfate-methane transition zone (SMTZ); (b) Raman spectroscopic characterization of the black carbon in methane anaerobic oxidizing archaea (ANME), activated carbon, and graphite. (c) and (d) the black spherical material is the black carbon produced by ANME (modified from Boetius et al, 2013; Allen et al, 2021) |
图7 海洋沉积物不同深度剖面BC的地球化学特征按海水深度划分为浅海区(0~200m)、半深海区(200~2000m)、深海区(2000~6000m)和深渊海沟区(> 6000m)。a.沉积物中BC的含量(干重); b. 沉积物中BC/TOC值; c.沉积物BC的δ13C值; d.沉积物BC的Δ14C值 (图中数据源自Middelburg et al, 1999; Kang et al, 2009; Lohmann et al, 2009; Li et al, 2012; Salvadó et al, 2017; Zhou et al, 2017; Shen et al, 2018; Yang et al, 2018; Ren et al, 2019, 2022; Wu et al, 2019; Pei et al, 2020; Dan et al, 2022; Liu et al, 2022; Zhang et al, 2022; Fu et al, 2023; Li et al, 2023a; Wulandari et al, 2023) Fig. 7 Geochemical characteristics of BC in different depth profiles of marine sediments. According to the depth of seawater: shallow sea (0~200m), semi-deep sea (200~2000m), deep sea (2000~6000m) and hadal zone (> 6000m). (a) The content of BC in the sediment; (b) the BC/TOC value in the sediment; (c) the δ13C value of BC in the sediment; (d) the Δ14C value of BC in the sediment (the data in the figure are cited from Middelburg et al, 1999; Kang et al, 2009; Lohmann et al, 2009; Li et al, 2012; Salvadó et al, 2017; Zhou et al, 2017; Shen et al, 2018; Yang et al, 2018; Ren et al, 2019, 2022; Wu et al, 2019; Pei et al, 2020; Dan et al, 2022; Liu et al, 2022; Zhang et al, 2022; Fu et al, 2023; Li et al, 2023a; Wulandari et al, 2023) |
[1] |
曹军骥, 占长林, 2011. 黑碳在全球气候和环境系统中的作用及其在相关研究中的意义[J]. 地球科学与环境学报, 33(2): 177-184.
|
[2] |
方仔铭, 2018. 南海及极地海域黑碳的源、汇及其对海洋碳循环的影响[D]. 厦门: 厦门大学: 1-109.
|
[3] |
夏翠梅, 王楠, 刘景昱, 等, 2023. “碳中和”目标下海洋黑碳的源汇过程及其意义[J/OL]. 地质科技通报. https://doi.org/10.19509/j.cnki.dzkq.tb20220455.
|
[4] |
徐翠玲, 孙治雷, 吴能友, 等, 2020. 海底泥火山的甲烷迁移与转化及其对海洋碳输入的影响[J]. 海洋地质与第四纪地质, 40(6): 1-13.
|
[5] |
赵维殳, 肖湘, 2023. 深海热液区微生物群落与环境适应性机理[J]. 中国科学: 生命科学, 53(5): 660-671.
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
/
〈 |
|
〉 |