Journal of Tropical Oceanography >
Numerical simulation study on the effect of wind on the hydrodynamic characteristics of undular tidal bores seawall
Received date: 2023-09-27
Revised date: 2023-12-13
Online published: 2024-01-02
Supported by
National Key Research and Development Program Project(2022YFC3103601)
National Natural Science Foundation of China Key Project(51839002)
Hunan Provincial Natural Science Foundation Project(2021JJ20043)
Open Fund of Zhejiang Key Laboratory of Estuaries and Coasts(ZIHE21009)
Zhejiang Provincial Natural Science Foundation(LY22E090007)
Science and Technology Program Project of Zhejiang Province Water Resources Department(RC2020)
Based on the two-dimensional incompressible two-phase flow numerical model, the reliability of the two-phase flow surge computational model in simulating the interaction between the wave-like surge and the sea pond is verified by comparing the numerical computational results with the experimental data. Then, this paper systematically analyses the effects of wind speed, surge height, pre-tidal water depth and slope gradient on the wave-exceeding characteristics of the undulating surge on the seapond by setting up reasonable calculation conditions. Calculation results show that wind speed significantly affects the wave overtopping of the wave-like surge on the seapond, the higher the wind speed, the higher the wave overtopping of the surge, and the higher the load on the retaining wall; with the increase of surge height and pre-tidal depth, the wave overtopping of the surge and the load on the retaining wall increase; when the slope of the seapond is increased, the wave overtopping and the load on the retaining wall show the tendency to increase firstly and then decrease later. The research results of this paper have certain reference significance for the correct understanding of wave surge in the pond under the action of wind, and the change rule of the load law of wave retaining wall, which provides a scientific basis for the engineering design and safety assessment of water-related buildings in the river section of wave surge.
WANG Xu , QU Ke , WANG Zijun , YANG Yuanping , WANG Chao , ZHANG Liangbin . Numerical simulation study on the effect of wind on the hydrodynamic characteristics of undular tidal bores seawall[J]. Journal of Tropical Oceanography, 2024 , 43(5) : 116 -130 . DOI: 10.11978/2023139
图3 计算区域布置x 表示涌潮传播方向; z表示水深方向; h为水深; 黑点和S1为流速仪; WG1~WG7为浪高仪; 1:10表示tanα, α为坡角角度 Fig. 3 Computational domain |
表1 数值模拟工况设置表Tab. 1 Parameter setup of numerical simulation |
工况 | 无量纲风速 | 涌潮高度 | 潮前水深 | 斜坡坡度 | 佛劳德数 |
---|---|---|---|---|---|
A1 | 0 | 0.15 | 0.45 | 3 | 1.250 |
A2 | 1 | 0.15 | 0.45 | 3 | 1.250 |
A3 | 2 | 0.15 | 0.45 | 3 | 1.250 |
A4 | 3 | 0.15 | 0.45 | 3 | 1.250 |
A5 | 4 | 0.15 | 0.45 | 3 | 1.250 |
A6 | 5 | 0.15 | 0.45 | 3 | 1.250 |
B1 | 3 | 0.12 | 0.45 | 3 | 1.190 |
B2 | 3 | 0.18 | 0.45 | 3 | 1.285 |
B3 | 3 | 0.20 | 0.45 | 3 | 1.300 |
C1 | 0 | 0.12 | 0.45 | 3 | 1.190 |
C2 | 0 | 0.18 | 0.45 | 3 | 1.285 |
C3 | 0 | 0.20 | 0.45 | 3 | 1.300 |
D1 | 3 | 0.15 | 0.39 | 3 | 1.280 |
D2 | 3 | 0.15 | 0.42 | 3 | 1.260 |
D3 | 3 | 0.15 | 0.48 | 3 | 1.230 |
D4 | 3 | 0.15 | 0.51 | 3 | 1.220 |
E1 | 0 | 0.15 | 0.39 | 3 | 1.280 |
E2 | 0 | 0.15 | 0.42 | 3 | 1.260 |
E3 | 0 | 0.15 | 0.48 | 3 | 1.230 |
E4 | 0 | 0.15 | 0.51 | 3 | 1.220 |
F1 | 3 | 0.15 | 0.45 | 0 | 1.250 |
F2 | 3 | 0.15 | 0.45 | 1 | 1.250 |
F3 | 3 | 0.15 | 0.45 | 2 | 1.250 |
F4 | 3 | 0.15 | 0.45 | 4 | 1.250 |
F5 | 3 | 0.15 | 0.45 | 5 | 1.250 |
G1 | 0 | 0.15 | 0.45 | 0 | 1.250 |
G2 | 0 | 0.15 | 0.45 | 1 | 1.250 |
G3 | 0 | 0.15 | 0.45 | 2 | 1.250 |
G4 | 0 | 0.15 | 0.45 | 4 | 1.250 |
G5 | 0 | 0.15 | 0.45 | 5 | 1.250 |
图8 不同测点处自由液面高程的时间序列对比图Fig. 8 Comparisons of the time series of water surface elevations recorded at different wave gauges. (a) WG9; (b) WG10; (c) WG11; (d) WG14 |
图9 无风(a~e)和有风(f~j)状态不同时刻水体的速度云图t表示某一时刻的速度云图 Fig. 9 Velocity contours of water body at different time moments. (a~e) Without wind; (f~j) with wind |
图10 波状涌潮越浪量时程曲线对比Fig. 10 Comparison of time series of undular tide bore volume of overtopping water |
图11 挡浪墙所受的水动力荷载a. 水平荷载; b. 垂直荷载 Fig. 11 Hydrodynamic forces exerted at the seawall. (a) Horizontal force; (b) vertical force |
图13 不同风速下水体的速度云图a, b为${{U}^{\text{*}}}$=0时, 涌潮水体首次和二次越浪时的瞬间速度云图; c, d为${{U}^{\text{*}}}$=3时, 涌潮水体首次和二次越浪时的瞬间速度云图; e, f 为${{U}^{\text{*}}}$=5时, 涌潮水体首次和二次越浪时的瞬间速度云图。T为速度云图的时间; ${{U}^{\text{*}}}$表示无量纲风速 Fig. 13 Velocity contours of the water column at different wind speed |
图14 不同风速下涌潮越浪量的变化规律a. 涌潮越浪量时程曲线; b. 最大越浪量 Fig. 14 Variations law of surge over-wave volume under different wind speeds. (a) Time curve of surge over-wave volume; (b) maximum over-wave volume |
图16 不同涌潮高度下有风和无风时涌潮的最大越浪量Fig. 16 Maximum amount of overtopping water in windy and no-wind conditions under different undular tide bore heights |
图18 不同潮前水深下有风和无风时涌潮的最大越浪量Fig. 18 Maximum amount of overtopping water in windy and no-wind conditions under different pre-tidal depth |
图20 不同斜坡坡度下有风和无风时涌潮的最大越浪量Fig. 20 Maximum amount of overtopping water in wind and no-wind conditions under different slope |
[1] |
陈刚, 何昆, 杨元平, 等, 2020. 强涌潮对桥墩墩身作用力试验研究[J]. 浙江水利科技, 48(4): 20-23, 32.
|
[2] |
陈来华, 韩继静, 2007. 采用逆行涨水波法计算涌潮遇建筑物时的壅高[J]. 浙江水利科技, (2): 20-21.
|
[3] |
陈伟, 倪舒娴, 袁淼, 2018. 钱塘江海塘建设的历史沿革[J]. 浙江建筑, 35(9): 1-6.
|
[4] |
黄静, 潘存鸿, 陈刚, 等, 2013. 涌潮的水槽模拟及验证[J]. 水利水运工程学报, (2): 1-8.
|
[5] |
黄婷, 张怀, 石耀霖, 2022. 基于Boussinesq型方程的钱塘江涌潮数值模拟[J]. 地球物理学报, 65(1): 79-95.
|
[6] |
李志永, 金建峰, 杨火其, 等, 2020. 钱塘江九溪涌潮物理模型试验研究[J]. 浙江水利科技, 48(1): 1-4, 27.
|
[7] |
林炳尧, 黄世昌, 毛献忠, 1998. 波状水跃和波状涌潮的分析[J]. 水动力学研究与进展, 13(1): 106-115.
|
[8] |
林炳尧, 2008. 钱塘江涌潮的特性[M]. 北京: 海洋出版社: 87, 130 (in Chinese).
|
[9] |
林炳尧, 潘存鸿, 2015. 涌潮与激波[J]. 自然杂志, 37(2): 134-142.
|
[10] |
林伟栋, 赵西增, 叶洲腾, 等, 2017. 涌潮运动的CFD模拟研究[J]. 水动力学研究与进展, 32(6): 696-703.
|
[11] |
刘文虎, 朱小华, 张钟哲, 等, 2015. 钱塘江涌潮观测及其动力学特性研究[J]. 大连海洋大学学报, 30(5): 567-572.
|
[12] |
潘存鸿, 徐昆, 2006. 三角形网格下求解二维浅水方程的KFVS格式[J]. 水利学报, 37(7): 858-864.
|
[13] |
潘存鸿, 2007. 三角形网格下求解二维浅水方程的和谐Godunov格式[J]. 水科学进展, 18(2): 204-209.
|
[14] |
潘存鸿, 鲁海燕, 于普兵, 等, 2008a. 钱塘江二维涌潮数值模拟及其应用[J]. 浙江水利科技, (2): 4-8.
|
[15] |
潘存鸿, 鲁海燕, 曾剑, 2008b. 钱塘江涌潮特性及其数值模拟[J]. 水利水运工程学报, (2): 1-9.
|
[16] |
潘存鸿, 鲁海燕, 2009. 二维浅水间断流动数值模型在涌潮模拟中的应用[J]. 浙江大学学报(工学版), 43(11): 2107-2113.
|
[17] |
潘存鸿, 潘冬子, 郑君, 等, 2020. 台风对钱塘江涌潮影响研究[J]. 海洋学研究, 38(4): 40-47.
|
[18] |
戚蓝, 肖厅厅, 张芝永, 等, 2019. 涌潮水流CFD数值模拟[J]. 水利水运工程学报, (3): 32-40.
|
[19] |
吴辰, 张庆河, 张金凤, 等, 2014. 基于非静压方程的斜坡堤越浪数值模拟[J]. 港工技术, 51(6): 1-6.
|
[20] |
谢东风, 潘存鸿, 陆波, 等, 2012. 基于实测资料的钱塘江涌潮水动力学特性研究[J]. 水动力学研究与进展, 27(5): 501-508.
|
[21] |
杨火其, 杨永楚, 庄娟芳, 2001. 钱塘江河口斜坡式土堤水下防护面板稳定性试验[J]. 水利水运工程学报, (3): 65-68.
|
[22] |
杨火其, 潘存鸿, 周建炯, 等, 2008. 涌潮水力学特性试验研究[J]. 水电能源科学, 26(4): 136-138.
|
[23] |
杨火其, 李志永, 林一楠, 2019. 钱塘江河口涌潮作用下越堤水量影响因素分析[J]. 人民长江, 50(S2): 173-175 (in Chinese).
|
[24] |
岳书波, 曾剑, 陈永平, 等, 2018. 涌潮潮头掺气的模型试验研究[J]. 工程科学与技术, 50(1): 28-35.
|
[25] |
张良斌, 屈科, 黄竞萱, 等, 2023. 风对聚焦波海堤越浪特性影响的数值模拟研究[J]. 热带海洋学报, 42(6): 63-73.
|
[26] |
张芝永, 肖厅厅, 戚蓝, 等, 2020. 涌潮水流作用下桩柱表面压强及受力分析[J]. 天津大学学报(自然科学与工程技术版), 53(6): 573-581.
|
[27] |
赵渭军, 赵刚, 李永和, 2015. 钱塘江海塘护塘建筑物技术演进[J]. 浙江水利科技, 43(2): 34-37.
|
[28] |
朱军政, 林炳尧, 2003. 涌潮翻越丁坝过程数值试验初步研究[J]. 水动力学研究与进展, 18(6): 671-678.
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
/
〈 | 〉 |