Journal of Tropical Oceanography >
Simulation study of the evapotranspiration and rainfall infiltration of islands and reefs in the South China Sea
Editor: LIN Qiang
Received date: 2023-12-14
Revised date: 2024-03-12
Online published: 2024-03-27
Supported by
National Key Research and Development Program of China(2022YFC3103103)
Evapotranspiration and soil infiltration, as the basic links in the rainfall water cycle, play an extremely important role in regional hydrological characteristics and water resource utilization. This study takes the Zhaoshu Island as the study area to estimate the potential evapotranspiration in vegetation areas and the actual evaporation in non-vegetation areas based on PM (Penman-Monteith) formula and SEBAL (surface energy balance algorithm for land) formula, respectively, construct a BP(back propagation) neural network model to simulate the potential evapotranspiration in vegetation areas and the actual evaporation in non-vegetation areas of the island, and simulate rainfall infiltration in beaches and bare soil based on the Kostiakov infiltration model and characteristics of precipitation infiltration process. The results show that the determination coefficients (R2) of the two evapotranspiration simulation models are higher than 0.85, and the model efficiency index (EF) are higher than 0.85. The average daily evapotranspiration of each land cover types on the Zhaoshu Island is the highest in May and the lowest in December of a year. The monthly change of potential evapotranspiration in the vegetation area is the most obvious. In areas with high soil sand content, the R2 of the Kostiakov infiltration model is generally larger than 0.85. The steady infiltration rate of soil in the Zhaoshu Island is about 0.33 cm·min-1. Multi-year rainfall data shows that the rainfall intensity in the study area is basically less than the steady infiltration rate, so the rainfall to the ground basically all infiltrates, and the rainfall infiltration in the dry season and the rainy season is significantly different. This study provides a feasible solution for the simulation of evapotranspiration and rainfall infiltration in the South China Sea islands where there is a lack of measured data, and provides data support for the construction of the island precipitation cycle.
ZHAO Yongzhu , YAN Jinfeng , LIU Bei , ZHU Jiang . Simulation study of the evapotranspiration and rainfall infiltration of islands and reefs in the South China Sea[J]. Journal of Tropical Oceanography, 2024 , 43(6) : 37 -49 . DOI: 10.11978/2023192
表1 赵述岛土壤机械组成Tab. 1 Soil mechanical composition of the Zhaoshu Island |
表2 风力等级与风速换算Tab. 2 Wind class and wind speed conversion |
风速区间/(mm·s-1) | 风力等级 | 量化值 |
---|---|---|
0~0.2 | 0 | 0 |
0.3~1.5 | 1 | 1 |
1.6~3.3 | 2 | 2 |
3.4~5.4 | 3 | 3 |
5.5~7.9 | 4 | 4 |
8~10.7 | 5 | 5 |
10.8~13.8 | 6 | 6 |
表3 天气类型指数与天气情况换算 |
Tab. 3 Weather type index and weather condition conversion |
云量区间/% | 天气情况 | 天气类型指数 |
---|---|---|
0~20 | 雨天 | 0.1 |
20~40 | 阴天 | 0.3 |
40~60 | 多云 | 0.5 |
60~80 | 晴转多云 | 0.7 |
80~100 | 晴天 | 0.9 |
注: 若气象站历史数据记录该日有降水, 则天气类型指数记为0.1 |
表4 研究区域土壤样本物理性质(依据参考文献)Tab. 4 Physical properties of soil samples in the study area (from references) |
来源 | 砂粒/% | 粉粒/% | 黏粒/% | 容重/(g·cm-3) | 备注 |
---|---|---|---|---|---|
本研究 | >95 | <5 | 1.3 | ||
Duan等 (2011) | 94 | 4 | 2 | 无相关信息 | |
Ogbe等 (2011)实验(1) | 88 | 3.4 | 8.6 | 1.46 | 0~15cm |
90 | 3.4 | 6.6 | 1.43 | 15~30cm | |
Ogbe等 (2011) 实验(2) | 90 | 1.4 | 8.6 | 1.74 | 0~15cm |
92 | 1.4 | 6.6 | 1.75 | 15~30cm | |
Ogbe等 (2011) 实验(3) | 88 | 1.4 | 10.6 | 1.41 | 0~15cm |
92 | 1.4 | 6.6 | 1.46 | 15~30cm | |
Bi等 (2014) | 90 | 7 | 3 | 1.58 | |
Ahaneku等 (2015) 实验(1) | 87.1 | 9 | 3.9 | 1.6 | |
Ahaneku等 (2015) 实验(2) | 87.2 | 8.6 | 4.2 | 1.55 | |
Khalid等 (2018) | 90 | 7 | 3 | 无相关信息 | |
Yang等 (2022) | 90.33 | 2.66 | 7.01 | 无相关信息 |
表5 Kostiakov模型经验参数Tab. 5 Empirical parameters of the Kostiakov model |
数据来源 | Kostiakov模型 | 结束时间/min | 备注 | |
---|---|---|---|---|
Duan等 (2011) | 0.669 1 | 0.278 9 | 无相关信息 | 模拟入渗速率 |
Ogbe等 (2011) 实验(1) | 1.386 8 | 0.781 | 208 | 模拟累积入渗量 |
Ogbe等 (2011) 实验(2) | 1.559 6 | 0.784 | 208 | 模拟累积入渗量 |
Ogbe等 (2011) 实验(3) | 1.517 1 | 0.785 | 208 | 模拟累积入渗量 |
Bi等 (2014) | 1.159 | 0.588 | 60~90 | 模拟入渗速率 |
Ahaneku等 (2015) 实验(1) | 1.318 | 0.542 | 150 | 模拟累积入渗量 |
Ahaneku等 (2015) 实验(2) | 1.013 | 0.662 | 150 | 模拟累积入渗量 |
Khalid等 (2018) | 0.6 | 0.024 | >40 | 模拟入渗速率 |
Yang等 (2022) | 2.702 | 0.825 | 25 | 模拟累积入渗量 |
表6 赵述岛降雨入渗情况(2022年5月25日)Tab. 6 Rainfall infiltration on the Zhaoshu Island on May 25th, 2022 |
时间 | 总降雨量/m3 | 雨强/(cm·min-1) | 沙滩入渗量/m3 | 裸土入渗量/m3 |
---|---|---|---|---|
0~3h | 2304.12 | 0.004 | 223.35 | 354.32 |
3~6h | 35137.83 | 0.068 | 3406.06 | 5403.42 |
6~9h | 2304.12 | 0.004 | 223.35 | 354.32 |
9~24h | 0 | 0 | 0 | 0 |
表7 旱雨季不同地类蒸散发量与影响因子相关性分析Tab. 7 Correlation analysis of evapotranspiration in the different land cover types during the dry season and rainy season |
时间 | 地类 | 平均气温 | 最低气温 | 最高气温 | 风力等级 | 降水量 |
---|---|---|---|---|---|---|
旱季 | 不透水面 | 0.599* | 0.491* | 0.656* | -0.694* | -0.277* |
裸土 | 0.600* | 0.500* | 0.654* | -0.649* | -0.223* | |
植被 | 0.417* | 0.366* | 0.472* | -0.469* | -0.326* | |
雨季 | 不透水面 | 0.642* | 0.609* | 0.582* | -0.414* | -0.423* |
裸土 | 0.668* | 0.663* | 0.570* | -0.284* | -0.421* | |
植被 | 0.574* | 0.634* | 0.422* | -0.010 | -0.418* |
注: *表示P<0.001, 通过小于0.1%的显著性检验 |
[1] |
阿茹·苏里坦, 常顺利, 张毓涛, 2019. 天山林区不同群落土壤水分入渗特性的对比分析与模拟[J]. 生态学报, 39(24): 9111-9118.
|
[2] |
安善涛, 焦磊, 梁伟, 等, 2021. 基于多源数据的黄土高原陆地水循环结构变化分析[J]. 生态学报, 41(17): 6800-6813.
|
[3] |
曹永强, 王菲, 2021. 河北省植被时空变化及其对气象干旱的响应[J]. 南水北调与水利科技(中英文), 19(4): 708-719, 757.
|
[4] |
陈晓莹, 2020. 荒漠草原两种典型土壤的水分特征及其影响因素[D]. 银川: 宁夏大学:29-30.
|
[5] |
樊龙凤, 李海英, 黄真理, 等, 2021. 基于人工降水入渗的热带海岛表面砂土层水质变化特征[J]. 土壤, 53(1): 197-208.
|
[6] |
共产党员网, 2012. 三沙第一个基础设施项目竣工[EB/OL]. (2012-11-11) [2024-02-20]. https://news.12371.cn/2012/11/11/ARTI1352621075787274.shtml.
|
[7] |
韩生生, 刘苏峡, 宋献方, 等, 2021. 西沙赵述岛地表蒸散发实验[J]. 地理研究, 40(1): 172-184.
|
[8] |
胡明鉴, 蒋航海, 朱长歧, 等, 2017. 钙质砂的渗透特性及其影响因素探讨[J]. 岩土力学, 38(10): 2895-2900.
|
[9] |
简文星, 许强, 童龙云, 2013. 三峡库区黄土坡滑坡降雨入渗模型研究[J]. 岩土力学, 34(12): 3527-3533, 3548.
|
[10] |
李可良, 许宏发, 杨殷豪, 等, 2020. 钙质砂渗透性能研究现状及展望[J]. 中国水运(下半月), 20(1): 214-215, 218 (in Chinese).
|
[11] |
刘风华, 代智光, 费良军, 2019. 容重对红壤条件下涌泉根灌水分入渗能力影响[J]. 水土保持学报, 33(1): 86-90, 97.
|
[12] |
刘凯, 王磊, 宋乃平, 等, 2013. 毛乌素沙地南缘不同林龄人工柠条林土壤渗透性研究[J]. 干旱区资源与环境, 27(5): 89-94.
|
[13] |
刘茜茹, 冯天骄, 王平, 等, 2023. 晋西黄土区长期植被恢复对土壤表层入渗与水分储量差异的影响[J]. 水土保持通报, 43(2): 50-59.
|
[14] |
吕炳全, 王国忠, 全松青, 1987. 西沙群岛灰砂岛的沉积特征和发育规律[J]. 海洋地质与第四纪地质, 7(2): 59-69.
|
[15] |
马龙龙, 杜灵通, 宫菲, 等, 2019. 基于SEBAL模型的农牧交错区蒸散演变及生态需水规律[J]. 水土保持通报, 39(4): 177-183.
|
[16] |
澎湃新闻, 2017. 南海三沙岛礁引入风光互补新能源海水淡化设备, 化解用水难[EB/OL]. (2017-02-14)[2024-02-20]. https://www.thepaper.cn/newsDetail_forward_1618723.
|
[17] |
汤珊珊, 李占斌, 任宗萍, 等, 2015. 覆沙坡面产流产沙过程试验研究[J]. 水土保持学报, 29(5): 25-28.
|
[18] |
王海波, 马明国, 2014. 基于遥感和Penman-Monteith模型的内陆河流域不同生态系统蒸散发估算[J]. 生态学报, 34(19): 5617-5626.
|
[19] |
王红, 2014. 水土保持典型措施对地下水补给生态基流的影响研究[D]. 杨陵: 中国科学院研究生院(教育部水土保持与生态环境研究中心):73.
|
[20] |
王瑞, 唐文浩, 宋玉梅, 等, 2011. 西沙群岛土壤环境质量状况及特征分析[J]. 安徽农业科学, 39(10): 5837-5840.
|
[21] |
王硕, 白云岗, 王兴鹏, 等, 2021. 和田河沙漠地带河床入渗特征研究[J]. 干旱区资源与环境, 35(8): 114-121.
|
[22] |
王韦娜, 张翔, 张立锋, 等, 2019. 蒸渗仪法和涡度相关法测定蒸散的比较[J]. 生态学杂志, 38(11): 3551-3559.
|
[23] |
王新志, 王星, 胡明鉴, 等, 2017. 吹填人工岛地基钙质粉土夹层的渗透特性研究[J]. 岩土力学, 38(11): 3127-3135.
|
[24] |
邢建伟, 宋金明, 2023. 南海大气沉降及其生态环境效应[J]. 热带海洋学报, 42(3): 19-39.
|
[25] |
熊友胜, 2013. 三峡库区紫色土坡耕地水量平衡研究[D]. 重庆:西南大学:32-33.
|
[26] |
徐俊增, 彭世彰, 张瑞美, 等, 2006. 基于气象预报的参考作物蒸发蒸腾量的神经网络预测模型[J]. 水利学报, 37(3): 376-379.
|
[27] |
杨安富, 胡玉麟, 林天, 等, 2022. 中国西沙群岛土系的建立[J]. 土壤学报, 59(3): 667-677.
|
[28] |
赵焕庭, 王丽荣, 袁家义, 2017. 南海诸岛的自然环境、资源与开发——纪念中国政府收复南海诸岛70周年(3)[J]. 热带地理, 37(5): 659-680, 693.
|
[29] |
赵景波, 马延东, 邢闪, 等, 2011. 腾格里沙漠宁夏回族自治区中卫市沙层水分入渗研究[J]. 水土保持通报, 31(3): 12-16, 70.
|
[30] |
郑超磊, 贾立, 胡光成, 2023. 高分一号卫星遥感数据驱动ETMonitor模型估算16 m分辨率蒸散发及验证[J]. 遥感学报, 27(3): 758-768.
|
[31] |
中国网, 2016. 军民融合力量大三沙市走出岛礁绿化生态发展之路[EB/OL]. (2016-09-29)[2024-02-20]. http://cn.chinagate.cn/environment/2016-09/29/content_393981872.htm.
|
[32] |
周剑, 李新, 王根绪, 等, 2008. 陆面过程模式SIB2与包气带入渗模型的耦合及其应用[J]. 地球科学进展, 23(6): 570-579.
|
[33] |
周英杰, 刘艳伟, 黄一峰, 等, 2023. 生物质种类和添加量对肥液灌溉土壤入渗特征和养分运移的影响[J]. 华南农业大学学报, 44(4): 585-592.
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
/
〈 | 〉 |