Journal of Tropical Oceanography >
Property analysis and lithology identification of seismic reflection anomalies on the continental slope of northeastern South China Sea
Copy editor: YAO Yantao
Received date: 2021-03-03
Revised date: 2021-04-07
Online published: 2021-04-13
Supported by
Youth Innovation Promotion Association Chinese Academy of Sciences(Y202076)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0204)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0104)
Rising Star Foundation of the South China Sea Institute of Oceanology(NHXX2019DZ0101)
Special Support Program for Cultivating High-level Talents in Guangdong Province(2019BT02H594)
National Natural Science Foundation of China(U1901217)
National Natural Science Foundation of China(91855101)
National Natural Science Foundation of China(41876052)
The northern margin of the South China Sea (SCS) is often regarded as a magma-poor passive continental margin. Many high amplitude anomalies were observed in previous studies on seismic profiles at the northern part of the Continent-Ocean Transition (COT) in the northern SCS, and were interpreted as sills and volcanos. However, further investigation on the properties of these high amplitude anomalies was lacking. In this study, we observed a large anomaly with a thickness of ~1.2 km in two multi-channel seismic profiles (SO1E and SOY) on the northeastern continental slope of the SCS. This provides an opportunity to determine the presence of magmatic activities north of the COT. Velocity analysis and AVO (amplitude variation with offset) analysis were performed for the large-amplitude anomaly. Results show that the high-amplitude anomaly has a higher P wave velocity and Poisson’s ratio than the host strata above. Considering the regional geologic background, the internal reflection characteristics, spatial size and shape of this high-amplitude anomaly, we suggest that the high-amplitude anomaly can be characterized as an igneous rock and further classified as a laccolith. This also indicates that multi-phase magmatism occurred north of the COT since the Miocene.
Key words: northeastern South China Sea; laccolith; velocity analysis; AVO analysis
LI Bo’an , HU Shanzheng , YAN Pin , YU Junhui , WANG Xiao , TANG Qunshu . Property analysis and lithology identification of seismic reflection anomalies on the continental slope of northeastern South China Sea[J]. Journal of Tropical Oceanography, 2022 , 41(1) : 204 -214 . DOI: 10.11978/2021028
图1 研究区(a)及测线(b)位置示意图图a Locations of the study area (a) and seismic lines (b). (a) The area between two brown curves represents the Continent-Ocean Transition (COT) (Wang et al, 2006). Red ellipses represent seamounts (Fan et al, 2017). (b) Black lines represent two multi-channel seismic lines SO1E and SOY used in this study. Yellow circles and a ellipse represent the high-amplitude anomalies observed in previous studies and this study, respectively |
图5 CDP号为14850~17851的地震剖面(a)与精细速度场(b)Fig. 5 Seismic profile (a) and interval velocity field (b) between CDPs 14850~17851 |
表1 SO1E测线1#—5#CDP上4个拾取点的速度Tab. 1 Velocities at CDPs 1#~5# of Line SO1E |
CDP | 点号 | 时间/ms | 叠加速度/(m•s-1) | 层速度/(m•s-1) |
---|---|---|---|---|
1# | ① | 1915 | 1502 | 1874 |
② | 2370 | 1581 | 2387 | |
③ | 3195 | 1845 | 2977 | |
④ | 3485 | 1960 | 3207 | |
2# | ① | 1924 | 1503 | 1828 |
② | 2419 | 1577 | 2381 | |
③ | 3264 | 1820 | 3270 | |
④ | 3586 | 1996 | 3282 | |
3# | ① | 2173 | 1504 | 1890 |
② | 2725 | 1590 | 2546 | |
③ | 3305 | 1798 | 3692 | |
④ | 3773 | 2128 | 3370 | |
4# | ① | 2188 | 1503 | 1850 |
② | 2763 | 1586 | 2404 | |
③ | 3310 | 1747 | 3601 | |
④ | 3883 | 2120 | 3322 | |
5# | ① | 2413 | 1502 | 1932 |
② | 2920 | 1586 | 2252 | |
③ | 3470 | 1708 | 3584 | |
④ | 3865 | 1944 | 3362 |
*本研究的数据采集得到国家自然科学基金委员会共享航次计划(航次编号: NORC-2012-08、NORC-2014-08)的资助, 该航次由中国科学院南海海洋研究所“实验2”号科考船实施, 在此一并致谢。
[1] |
丁巍伟, 李家彪, 李军, 2010. 南海北部陆坡海底峡谷形成机制探讨[J]. 海洋学研究, 28(1): 26-31.
|
[2] |
冯全雄, 2012. 珠江口盆地东沙隆起珠江组礁滩储层预测[D]. 北京: 中国地质大学(北京): 88-97.
|
[3] |
侯文爱, 2019. 南海东北部陆缘地壳横波速度结构研究[D]. 杭州: 浙江大学: 43-45.
|
[4] |
李海龙, 吴招才, 许明炬, 2019. 南海东北部陆缘地壳结构特征及下地壳高速层成因[J]. 海洋学研究, 37(2): 44-56.
|
[5] |
吴时国, 孙运宝, 孙启良, 等, 2008. 深水盆地中大型侵入砂岩的地震识别及其成因机制探讨[J]. 地球科学进展, 23(6): 562-569.
|
[6] |
姚伯初, 杨木壮, 吴时国, 等, 2008. 中国海域的天然气水合物资源[J]. 现代地质, 22(3): 333-341.
|
[7] |
易海, 钟广见, 马金凤, 2007. 台西南盆地新生代断裂特征与盆地演化[J]. 石油实验地质, 29(6): 560-564.
|
[8] |
张光学, 黄永祥, 祝有海, 等, 2002. 南海天然气水合物的成矿远景[J]. 海洋地质与第四纪地质, 22(1): 75-81.
|
[9] |
张莉, 张光学, 王嘹亮, 等, 2014. 南海北部中生界分布及油气资源前景[M]. 北京: 地质出版社: 266-273.
|
[10] |
赵宏超, 朱筱敏, 葛家旺, 等, 2018. 洋陆转换带类型特征和形成机理及其在南海北部的表现特征[J]. 地质科技情报, 37(4): 51-60.
|
[11] |
朱俊江, 丘学林, 徐辉龙, 等, 2012. 南海北部洋陆转换带地震反射特征和结构单元划分[J]. 热带海洋学报, 31(3): 28-34.
|
[12] |
邹和平, 李平鲁, 饶春涛, 1995. 珠江口盆地新生代火山岩地球化学特征及其动力学意义[J]. 地球化学, 24(S1): 33-45.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
/
〈 | 〉 |