Journal of Tropical Oceanography >
Distribution characteristics of dissolved carbohydrates and their influencing factors in the Maowei Sea, Qinzhou Bay, northern South China Sea
Copy editor: LIN Qiang
Received date: 2024-09-09
Revised date: 2024-10-11
Online published: 2024-10-16
Supported by
National Natural Science Foundation of China(42166002)
Natural Science Foundation of Jiangsu Province(BK20241962)
Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University(2024KF01)
Scientific Research Capacity Building Project for Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi(23-026-271)
Lianyungang Science and Technology Plan Program(JCYJ2313)
Using the 2, 4, 6-tripyridyl-s-triazine (TPTZ) method, the concentrations of dissolved monosaccharides (MCHO), polysaccharides (PCHO), and total carbohydrates (TCHO) were determined for the surface and bottom seawater of the Maowei Sea in December 2021, and their distribution characteristics and influencing factors were studied. The results showed that mean (range) concentrations of MCHO, PCHO and TCHO were 15.15 (2.40’38.40), 13.19 (3.92’38.40) and 28.34 (11.52’76.80) μmol C·L-1, respectively. The average proportion of TCHO in dissolved organic carbon (DOC) was (40.2±10.8)%, suggesting that TCHO was an important component of DOC. The average proportion of MCHO in TCHO was (52.9±12.2)%, indicating that MCHO was the main fraction of TCHO. The horizontal distributions of MCHO, PCHO, and TCHO in the surface and bottom seawater both displayed a decreasing trend from the estuary to offshore waters. In the surface seawater, the concentrations of MCHO, PCHO, and TCHO were much negatively correlated with salinity (P<0.01) but much positively correlated with chlorophyll a (Chl a). In the bottom seawater, the concentrations of MCHO and TCHO were much negatively correlated with salinity (P<0.01) and TCHO was much positively correlated with Chl a. These results suggested that terrestrial inputs and biogeochemical processes were important factors affecting the distribution of dissolved carbohydrates in the Maowei Sea during winter. The study will help to enrich the understanding of biogeochemical characteristics of dissolved carbohydrates in the Guangxi part of Beibu Gulf, which is of great significance to the in-depth understanding of global carbon cycle processes and their mechanisms.
ZENG Debin , PENG Guangyu , YANG Bin , MO Xiaorong , ZHOU Jiaodi , HUANG Haifang , YAN Tingting . Distribution characteristics of dissolved carbohydrates and their influencing factors in the Maowei Sea, Qinzhou Bay, northern South China Sea[J]. Journal of Tropical Oceanography, 2025 , 44(3) : 197 -205 . DOI: 10.11978/2024171
表 1 茅尾海表、底层水体中MCHO、PCHO和TCHO浓度(μmol C·L-1)及 MCHO、PCHO在TCHO占比Tab. 1 Concentrations of MCHO, PCHO and TCHO (μmol C·L-1) and percentages of MCHO and PCHO in TCHO in surface and bottom waters of the Maowei Sea |
项目 | 表层浓度/(μmol C·L-1) | 底层浓度/(μmol C·L-1) | ||
---|---|---|---|---|
范围 | 平均值 | 范围 | 平均值 | |
MCHO | 6.00~38.40 | 16.30±8.22 | 2.40~22.00 | 12.84±6.29 |
PCHO | 5.28~38.40 | 14.52±7.95 | 3.92~19.84 | 10.54±4.90 |
TCHO | 12.96~76.80 | 30.82±15.71 | 11.52~39.84 | 23.38±8.68 |
MCHO/TCHO | 38.3%~69.4% | (52.9±8.7)% | 20.8%~84.9% | (53.1±17.9)% |
PCHO/TCHO | 30.6%~61.7% | (47.1±8.7)% | 34.0%~79.2% | (46.9±17.9)% |
表2 不同河口海区MCHO、PCHO和TCHO的浓度对比Tab. 2 Comparison of concentrations of MCHO, PCHO and TCHO in different estuaries and sea areas |
区域 | 调查时间 | MCHO浓度/(μmol C·L-1) | PCHO浓度/(μmol C·L-1) | TCHO浓度/(μmol C·L-1) | 参考文献 |
---|---|---|---|---|---|
雅浦海沟 | 2016 | 4.60~22.10 | 3.50~27.30 | 13.80~36.30 | Guo et al, 2020 |
东海 | 2017 | 1.94~6.23 | 1.46~9.85 | 4.73~15.21 | 胡春 等, 2019 |
东海 | 2012 | 3.30~13.00 | 1.30~24.80 | 10.20~35.80 | He et al, 2015 |
南海 | 2015 | 0.22~13.66 | 1.51~21.02 | 2.63~26.24 | 龚词 等, 2017 |
北冰洋 | 2002 | 0.40~8.60 | 0.50~13.60 | 1.3~18.90 | Wang et al, 2006 |
墨西哥湾 | 2010 | 4.00~27.00 | 5.00~76.00 | 15.00~103.00 | Lin et al, 2015 |
孟加拉湾 | 1995—1996 | 2.40~15.60 | 17~36.60 | 27.00~47.40 | Bhosle et al, 1998 |
加尔维斯顿湾 | 1999 | 13.30~62.10 | 10.2~41.90 | 23.00~96.70 | Hung et al, 2001 |
特里尼蒂河 | 2000—2001 | 27.00~112.00 | 3.70~16.30 | 35.60~155.40 | Hung et al, 2005 |
胶州湾 | 2007—2008 | 2.90~65.90 | 0.30~210.20 | 10.80~276.10 | Yang et al, 2010 |
珠江口 | 2007 | 7.70~70.00 | 3.60~63.00 | 15.00~133.00 | He et al, 2010 |
茅尾海 | 2021 | 6.00~38.40 | 5.28~38.40 | 12.96~72.80 | 本研究 |
图3 茅尾海表层(a)和底层(b)水体中TCHO、DOC和TCHO/DOC与盐度相关性分析Fig. 3 Correlation analysis of TCHO, DOC and TCHO/DOC with salinity in surface (a) and bottom (b) water layers of the Maowei Sea |
[1] |
陈振华, 夏长水, 乔方利, 2017. 钦州湾水交换能力数值模拟研究[J]. 海洋学报, 39(3): 14-23.
|
[2] |
龚词, 杨桂朋, 2017. 夏季南海北部溶解碳水化合物浓度分布[J]. 海洋环境科学, 36(3): 321-327.
|
[3] |
郭威, 叶丰, 连忠廉, 等, 2016. 珠江口水体有机碳的季节性变化[J]. 热带海洋学报, 35(4): 40-50.
|
[4] |
胡春, 陈岩, 杨桂朋, 等, 2019. 2017年春季黄东海碳水化合物的分布特征[J]. 海洋环境科学, 38(6): 848-855.
|
[5] |
黄慧倩, 胡浩鹏, 杨斌, 等, 2023. 亚热带海湾表层沉积物对磷的吸附解析特征研究[J]. 环境科学研究, 36(2): 363-372.
|
[6] |
孙翠慈, 岳维忠, 赵文杰, 等, 2023. 大亚湾表层沉积物碳水化合物活性酶基因分布特征[J]. 热带海洋学报, 42(5): 76-91.
|
[7] |
杨斌, 钟秋平, 张晨晓, 等, 2015. 钦州湾叶绿素a和初级生产力时空变化及其影响因素[J]. 环境科学学报, 35(5): 1333-1340.
|
[8] |
杨斌, 牛贝贝, 鲁栋梁, 等, 2020. 夏季茅尾海主要入海河口区尿素的水平分布及影响因素[J]. 应用海洋学学报, 39(2): 239-245.
|
[9] |
张正斌, 2004. 海洋化学[M]. 青岛: 中国海洋大学出版社 (in Chinese).
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
/
〈 |
|
〉 |