Journal of Tropical Oceanography >
Tracing the sources and formation mechanisms of marine atmospheric nitrate using stable isotopes
Copy editor: LIN Qiang
Received date: 2024-10-15
Revised date: 2024-11-08
Online published: 2024-11-13
Supported by
National Key R&D Program of China(2023YFF0806001)
National Natural Science Foundation of China(42373083)
Nitrate ($\mathrm{NO}_{3}^{-}$) in the atmosphere, a key product formed from nitrogen oxides (NOx) through reactions with multiple oxidants such as ozone (O3) and hydroxyl radicals (·OH), is one of the main atmospheric pollutants, impacting air quality, climate, and ecosystems. This paper reviews the formation mechanisms, oxidation pathways, and global distribution of nitrogen and oxygen isotopic (such as δ15N and δ18O) signatures in marine atmospheric $\mathrm{NO}_{3}^{-}$, focusing on the roles of various oxidants like O3 and ·OH. Notably, the hydrocarbon/dimethyl sulfide (HC/DMS) pathway, the heterogeneous reaction of N2O5 with chlorine-containing (Cl2) aerosols, and the reaction of NO2 with reactive halogen compounds significantly impact the formation mechanisms of $\mathrm{NO}_{3}^{-}$ in the marine atmosphere and result in elevated δ18O values. Based on global observational data, the δ15N and δ18O composition of $\mathrm{NO}_{3}^{-}$ shows significant variations across different oceanic regions and coastal cities, probably reflecting regional differences in pollution sources, photochemical conditions, and atmospheric reaction pathways. Additionally, $\mathrm{NO}_{3}^{-}$ deposition into marine systems affects the nitrogen cycle within the oceans. Future research should prioritize long-term monitoring and data collection across diverse global regions to enhance quantitative assessments of oxidant contributions, thereby providing a more systematic understanding of atmospheric $\mathrm{NO}_{3}^{-}$ formation mechanisms and their implications for marine ecosystems and climate change.
CHEN Tianshu , XIAO Hongwei , GUAN Wenkai , XIAO Huayun . Tracing the sources and formation mechanisms of marine atmospheric nitrate using stable isotopes[J]. Journal of Tropical Oceanography, 2025 , 44(3) : 167 -178 . DOI: 10.11978/2024194
表1 硝酸盐氮氧同位素在测试中主要的前处理方法Tab. 1 Main pretreatment methods for nitrogen and oxygen isotopic analysis of nitrate |
预处理方法 | 可测定同位素 | 优点 | 缺点 | 文献 |
---|---|---|---|---|
蒸馏法 | N | 可应用于不同类型的样品, 不需要昂贵的设备; 适用低浓度样品 | 步骤较繁琐; 容易受到有机物和其他含氮化合物的干扰、容易发生同位素分馏, 导致精度和灵敏度有限 | Diaconu et al, 2005 |
扩散法 | N | 所需设备和试剂相对简单和廉价; 可批量处理样品; 耗时较短 | 样品需求量较大; 耗时较长; 不适合低浓度样品的同位素分析; 不完全扩散可能引起同位素分馏, 导致较大的误差 | Brooks, 1989; 孙文青 等, 2019 |
热解法 | N、O | 避免了样品与反应管氧同位素的交换, 适用于微量样品的高精度同位素分析 | 设备昂贵, 对操作条件要求严格, 需要经验丰富的技术人员 | Michalski et al, 2002 |
离子交换树脂法 | N、O | 具有高选择性, 能去除干扰离子; 适用于低浓度样品 | 需要的样品量较大, 耗时较长;交换和洗脱过程中可能会导致部分样品损失; 费用较高 | Chang et al, 1999; Silva et al, 2000 |
细菌法 | N、O | 检出限较低; 前处理方法简单; 成本较低; 可以同时分析氮和氧同位素 | 需要细菌培养和较长的反应时间; 需要无氧条件操作, 易受氧气污染; 细菌的代谢特性可能影响同位素分析的结果, 导致结果不稳定 | 毛绪美 等, 2005; 尹希杰 等, 2023 |
化学法 | N、O | 反应速度快; 检出限低; 结果稳定 | 使用剧毒试剂; 试剂纯度和质量要求高, 需要精确控制反应条件(如温度、酸碱度)以确保结果准确 | McIlvin et al, 2005; 张雯淇 等, 2019 |
[1] |
董鑫媛, 郭庆军, 魏荣菲, 等, 2020. 大气硝酸盐氧同位素异常及应用进展[J]. 生态学杂志, 39(3): 1022-1032.
|
[2] |
李佩霖, 傅平青, 康世昌, 等, 2016. 大气气溶胶中的氮: 化学形态与同位素特征研究进展[J]. 环境化学, 35(1): 1-10.
|
[3] |
李亲凯, 杨周, 黄俊, 等, 2016. 大气颗粒物稳定同位素组成的研究进展[J]. 生态学杂志, 35(4): 1063-1071.
|
[4] |
毛绪美, 罗泽娇, 李永勇, 等, 2005. 地下水硝酸盐氮同位素分析最新方法——细菌反硝化法[J]. 地球学报, 2005, 26(z1):44-47.
|
[5] |
宋韦, 刘学炎, 2024. 地-气系统活性氮来源与转化的同位素示踪研究进展[J]. 应用生态学报, 35(9): 2362-2371.
|
[6] |
孙文青, 陆光华, 薛晨旺, 等, 2019. 基于稳定同位素技术识别河流硝酸盐污染源研究进展[J]. 四川环境, 38(3): 193-198.
|
[7] |
王海潮, 唐明金, 谭照峰, 等, 2020. 硝酰氯的大气化学[J]. 化学进展, 32(10): 1535-1546.
|
[8] |
肖红伟, 肖化云, 龙爱民, 等, 2012. 贵阳地区大气降水中δ15N-$\mathrm{NO}_{3}^{-}$组成及来源分析[J]. 环境科学学报, 32(4): 940-945.
|
[9] |
尹希杰, 杨海丽, 崔坤磊, 等, 2023. 细菌反硝化法与化学转化法测试硝酸盐氮氧同位素对比研究[J]. 同位素, 36(2): 176-185.
|
[10] |
张雯淇, 章炎麟, 2019. 大气硝酸盐中氧同位素异常研究进展[J]. 科学通报, 64(7): 649-662.
|
[11] |
朱艳宸, 李丽, 王鹏, 等, 2020. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 35(2): 167-179.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
/
〈 |
|
〉 |