Journal of Tropical Oceanography >
Spatial characteristics and formation mechanisms of hypoxia zone in Macao Inner Harbor
Copy editor: LIN Qiang
Received date: 2021-02-17
Revised date: 2021-04-20
Online published: 2021-04-29
Supported by
Special Project on National Science and Technology Basic Resources Investigation(2019FY101900)
National Natural Science Foundation of China(51409587)
Natural Science Foundation of Guangdong Province, China(2017A030313329)
Copyright
Over the years, the Macao Inner Harbor has been the most serious eutrophication area in Macao. The deterioration of water quality in the inner harbor and its adjacent waters has killed a large number of fish. Based on the statistical data of water quality monitoring in Macao in recent years, we set up the scenarios of sediment release and sewage outlet discharge, and use three-dimensional numerical simulation model to simulate the dissolved oxygen distribution characteristics and hydrodynamic processes in the region. Our research results show that the hypoxia in the inner harbor is the result of physical and biochemical oxygen consumption in the Macao sea area. There are no obvious ocean reciprocating current and water stratification in the inner harbor. The key physical mechanism of hypoxia zone formation involves the weak hydrodynamic flow in the inner harbor and the semi-enclosed water area of Fai Chi Kei, which results in pollutant retention. The biochemical oxygen consumption in the Fai Chi Kei area leads to the inner harbor hypoxia directly. The oxygen consumption of the bottom sediment further accelerates the hypoxia.
YANG Fang , JIANG Ran , YANG Liling , LIU Bingjun . Spatial characteristics and formation mechanisms of hypoxia zone in Macao Inner Harbor[J]. Journal of Tropical Oceanography, 2021 , 40(6) : 52 -62 . DOI: 10.11978/2021019
图1 模型研究布置图a. 研究范围及网格剖分; b. 内港水域网格细节及水下地形; c. DO初始浓度分布及剖面采样、排污口(水量单位: m3·s-1 )、潮位站位置 Fig. 1 Layout of model domain. (a) research area and grid; (b) grid detail and underwater topography of inner harbor waters; (c) initial DO concentration distribution and profile sampling, sewage outfall and tidal station locations |
图3 内港水域DO平均浓度场验证a. 实测; b. 模拟 Fig. 3 Verification of mean DO concentration field in the inner harbor area. (a) measured; (b) simulated |
表1 模型情景设置Tab. 1 Scenarios of model setting |
模型设定条件 | 底泥耗氧 | 排污口 |
---|---|---|
情景1 | + | + |
情景2 | + | — |
情景3 | — | + |
情景4 | — | — |
注: “+”表示考虑, “—”表示不考虑 |
[1] |
澳门环境保护局, (2017-02). 澳门水质自动监测站年度监测数据报告[EB/OL]. 澳门: 澳门环境保护局: 6-7. https://www.dspa.gov.mo/publish.aspx. Macau Environmental Protection Bureau, (1999-12).
Annual monitoring data report of Macau water quality automatic monitoring station[EB/OL]. Macao: Macau Environmental Protection Bureau:6-7. https://www.dspa.gov.mo/publish.aspx (in Chinese)
|
[2] |
澳门环境保护局, (2021-06). 澳门环境状况报告[EB/OL]. 澳门: 澳门环境保护局:31-43. https://www.dspa.gov.mo/publish.aspx. Macau Environmental Protection Bureau, (2021-06).
Report on the state of the environment in Macao[EB/OL]. Macao: Macau Environmental Protection Bureau: 31-43. https://www.dspa.gov.mo/publish.aspx (in Chinese).
|
[3] |
蔡树群, 郑舒, 韦惺, 2013. 珠江口水动力特征与缺氧现象的研究进展[J]. 热带海洋学报, 32(5):1-8.
|
[4] |
邓思思, 朱志伟, 2013. 河流底泥耗氧量测量方法及耗氧量影响因素[J]. 水利水运工程学报, (4):60-66.
|
[5] |
龚依琳, 2019. 基于ECOLab的澜沧江小湾水库水质模拟研究[D]. 西安: 西安理工大学: 15-30.
|
[6] |
罗琳, 李适宇, 王东晓, 2008. 珠江河口夏季缺氧现象的模拟[J]. 水科学进展, 19(5):729-735.
|
[7] |
麻素挺, 林海转, 苏园, 等, 2019. 典型河口区低溶解氧现象及形成机理研究——以鳌江为例[J]. 环境科技, 32(5):28-34.
|
[8] |
王海龙, 丁平兴, 沈健, 2010. 河口/近海区域低氧形成的物理机制研究进展[J]. 海洋科学进展, 28(1):115-125.
|
[9] |
王巧宁, 2012. 大规模藻华区低氧对海洋生物的影响研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所):3-25.
|
[10] |
王松朵, 董洪哲, 王玥, 等, 2020. 2016年夏季长江口邻近海域溶解氧的周日变化特征及其影响因素[J]. 厦门大学学报(自然科学版), 59(S1):56-62.
|
[11] |
许晓飞, 王晓娟, 刘凤霞, 等, 2015. 感潮河段盐度和缺氧水体时空分布规律研究[J]. 环境科学学报, 35(9):2900-2909.
|
[12] |
张恒, 李适宇, 2009. 生化过程对夏季珠江口底层缺氧影响的模拟研究[C]// 中国环境科学学会2009年学术年会论文集. 武汉: 中国环境科学学会: 376-280.
|
[13] |
张恒, 李适宇, 2010. 基于改进的RCA水质模型对珠江口夏季缺氧及初级生产力的数值模拟研究[J]. 热带海洋学报, 29(1):20-31.
|
[14] |
张华, 李艳芳, 唐诚, 等, 2016. 渤海底层低氧区的空间特征与形成机制[J]. 科学通报, 61(14):1612-1620.
|
[15] |
|
[16] |
|
[17] |
DANISH HYDRAULIC INSTITUTE (DHI), 2012. WQ TEMPLATES scientific description[R]. Denmark: DHI.
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
/
〈 | 〉 |