Journal of Tropical Oceanography >
Analysis of energy dissipation process of wave propagation in beach foreshore under the influence of tide
Copy editor: YAO Yantao
Received date: 2021-06-26
Revised date: 2021-08-18
Online published: 2021-08-23
Supported by
National Natural Science Foundation of China(41930538)
National Natural Science Foundation of China(42076211)
Based on the measured wave data of the foreshore profile at the Changle beach, the variation rules of wave parameters and energy dissipation process in the tidal process are discussed using statistical analysis and spectral analysis. The results show that the wave in the observation period is mainly mixed wave, and the spectrum type of each sensor is wide, and the multi-peak oscillation is observed. In the process of shoreward propagation, the form of wave energy dissipation is changed from narrow frequency domain to broad frequency domain, the energy distribution tends to be dispersed, the energy of high frequency wave decreases, but the energy of low frequency wave increases, and infra-gravity wave is generated after wave breaking. There is a good correlation between the energy attenuation and the wave propagation distance in the surf zone. The energy attenuation of the broken wave in the surf zone is about 98.3%. The tidal level has obvious modulating effect on waves. The incident wave energy increases with the increase of tidal water level, and the higher the water level is, the more dispersed the distribution of incident wave energy is. There is a significant positive correlation between the effective wave height and the tidal level in the surf zone. The spectral variation of each sensor in tidal process has obvious similarity with the wave spectral variation along the profile.
Key words: tides; wave parameters; wave spectrum; intertidal zone
SONG Jiacheng , QI Hongshuai , ZHANG Chi , CAI Feng , YIN Hang . Analysis of energy dissipation process of wave propagation in beach foreshore under the influence of tide[J]. Journal of Tropical Oceanography, 2022 , 41(4) : 146 -153 . DOI: 10.11978/2021080
表1 高潮位时各测点的波浪参数统计Tab. 1 Wave parameter statistics at the high water level of each sensor |
统计参数 | 测点 | |||||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | |
水深均值/m | 4.72 | 4.05 | 3.33 | 2.66 | 2.00 | 1.38 |
有效波高均值/m | 1.83 | 1.87 | 1.71 | 1.48 | 1.25 | 0.70 |
有效波周期均值/s | 6.94 | 7.26 | 7.32 | 6.86 | 7.08 | 6.33 |
有效波陡均值 | 0.025 | 0.023 | 0.021 | 0.021 | 0.016 | 0.011 |
波能均值/(J·m-2) | 2529.79 | 2604.86 | 2262.28 | 1654.48 | 1143.96 | 437.73 |
表2 高潮位时各测点的谱参数统计Tab. 2 Spectral parameter statistics of each sensor at high water level |
测点 | 谱峰周期/s | 最大谱密度/(m2·s) | 谱尖度 | 谱宽度 |
---|---|---|---|---|
P1 | 9.14 | 4.92 | 1.75 | 0.66 |
P2 | 9.14 | 4.44 | 1.56 | 0.68 |
P3 | 9.48 | 3.83 | 1.38 | 0.68 |
P4 | 9.48 | 2.06 | 1.16 | 0.75 |
P5 | 10.67 | 0.97 | 1.05 | 0.75 |
P6 | 36.57 | 0.46 | 0.72 | 0.80 |
图5 潮汐过程图(a)与各时刻P1处的波能谱变化图(b)Fig. 5 Tidal process (a) and change of wave energy spectrum of P1 in the tidal process (b) |
表3 潮汐过程中各时刻的谱参数统计Tab. 3 Spectral parameter statistics of P1 in the tidal process |
时刻 | 谱峰周期/s | 最大谱密度/(m2·s) | 谱尖度 | 谱宽度 |
---|---|---|---|---|
10: 20 | 8.53 | 3.60 | 1.87 | 0.68 |
11: 20 | 8.53 | 2.46 | 1.62 | 0.62 |
12: 20 | 9.14 | 2.00 | 1.58 | 0.66 |
13: 20 | 8.26 | 1.16 | 1.24 | 0.69 |
14: 20 | 8.53 | 0.50 | 0.99 | 0.75 |
15: 20 | 51.20 | 0.16 | 0.60 | 0.85 |
16: 20 | 42.67 | 0.16 | 0.47 | 0.89 |
[1] |
蔡志爱, 石谦, 2009. 台湾海峡成因初探[M]. 厦门: 厦门大学出版社: 26-32. (in Chinese)
|
[2] |
陈子燊, 欧素英, 戴志军, 等, 2001. 岬间海湾滨面带波浪结构和外观统计特征[J]. 海洋通报, 20(3): 1-7.
|
[3] |
陈子燊, 李志强, 李志龙, 等, 2002. 海滩碎波带波性质的统计对比分析[J]. 中山大学学报(自然科学版), 41(6): 86-90.
|
[4] |
陈子燊, 李志强, 戴志军, 等, 2003. 近岸带三组成波耦合作用的观测与分析[J]. 热带海洋学报, 22(6): 46-53.
|
[5] |
李志强, 陈子燊, 李志龙, 等, 2005. 粤东后江湾近岸波浪要素变化特征分析[C]// 中国海洋工程学会. 第十二届中国海岸工程学术研讨会论文集. 昆明: 中国海洋工程学会: 468-472. (in Chinese)
|
[6] |
李志强, 陈子燊, 李志龙, 2010. 近岸带波浪传播过程中波性质的统计对比分析[J]. 广东海洋大学学报, 30(4): 43-47.
|
[7] |
任剑波, 何青, 沈健, 等, 2020. 远区台风“三巴”对长江口波浪动力场的作用机制[J]. 海洋科学, 44(5): 12-23.
|
[8] |
文圣常, 余宙文, 1984. 海浪理论与计算原理[M]. 北京: 科学出版社. (in Chinese)
|
[9] |
闫圣, 邹志利, 2020. 海岸波浪多次破碎波能耗散模型[J]. 海洋学报, 42(9): 30-37.
|
[10] |
俞聿修, 2000. 随机波浪及其工程应用[M]. 大连: 大连理工大学出版社.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
/
〈 | 〉 |