Journal of Tropical Oceanography >
Design of marine transmittance instrument and its application in primary productivity research*
Copy editor: LIN Qiang
Received date: 2021-08-03
Revised date: 2021-08-31
Online published: 2021-09-06
Supported by
National Natural Science Foundation of China(42076190)
National Natural Science Foundation of China(41776044)
National Natural Science Foundation of China(U20A20103)
Basic and applied basic Research Foundation of Guangdong Province(2021A1515011538)
Key Deployment Project of Centre for Ocean Mega-Research of Science, Chinese academy of science(COMS2019J10)
Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0602)
Special Project for Marine Economic Development (Six Major Marine Industries) of Guangdong Province (GDNRC2020019)
Carbon sequestration by photosynthesis of marine phytoplankton plays an important role in the global carbon cycle. Obtaining the seawater depth in a condition of different light attenuation is important for studying marine primary productivity by sampling seawater. In this study, a portable marine transmittance instrument without cable was developed, the first in the world. The special optical structure design and spectral filter technology make the spectral response in the band range of 400-700 nm exceed that of similar marine sensors, and the corresponding depth error is less than 0.5 m under the specific light attenuation. The device was applied to the study of mesoscale eddy primary productivity in the South China Sea, and the portability of the instrument was verified in terms of sampling rate and automation. By analyzing the spatial distribution of primary productivity in the vortex, the reliability of the instrument data was tested. Due to its incomparable advantages in price, accuracy, reliability, and portability of operation. Finally, the marine transmittance meter will play an important role in the future research of marine ecological environment.
XU Zhantang , SHI Zhen , XIE Baicheng , LIAO Jianzu , YANG Yuezhong , ZHOU Wen , LI Cai , YANG Dingtian . Design of marine transmittance instrument and its application in primary productivity research*[J]. Journal of Tropical Oceanography, 2022 , 41(3) : 38 -45 . DOI: 10.11978/2021099
图2 5mm和6mm光扩散玻璃的消光系数分光光度计测量光孔的影响导致了波形没有完全重叠, 光谱波形在可见光区域的变化很大, 需要后续的光学元件进行校正 Fig. 2 Extinction coefficient of 5- and 6-mm light diffusion glass. The influence of optical hole measured by spectrophotometer leads to the waveform not completely overlapping, and the spectral waveform changes greatly in the visible region, which needs to be corrected by subsequent optical elements |
图6 探头在波长400~700nm范围内对能量的响应a. 理想响应; b. MPAR的响应结果; c. 加拿大Satlantic公司研制的PAR响应率(摘自Satlantic PAR 技术说明书) Fig. 6 Response of the probe to energy in the wavelength range of 400-700 nm, where (a) is the ideal response; (b) is the response result of MPAR; (c) PAR response rate developed for Satlantic, Canada. Taken from the Satlantic PAR specification. |
图8 初级生产力采样站位点该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2019)1825号的标准地图制作。平均海面高度距平图基于2018年9月1日至21日的数据, 海面高度负值表示气旋式涡旋, 正值表示反气旋式涡旋 Fig. 8 Sampling stations of primary production in the study area. Map of average sea surface height anomaly bases on the data from September 1 to 21, 2018. The negative sea surface height value indicates cyclonic eddy, and positive value denotes anticyclonic eddy. Station A was chosen since it was located at the center of cyclonic eddy |
表1 4个站位中不同衰减比例所对应的水深值Tab. 1 Water depth values corresponding to different attenuation ratios at four stations |
太阳光在水中的衰减 比例/% | 水深/m | |||
---|---|---|---|---|
S1 | S2 | S3 | S4 | |
100 | 0 | 0 | 0 | 0 |
56 | 3 | 3 | 3 | 3 |
22 | 16 | 14 | 15 | 14 |
7 | 40 | 28 | 71 | 38 |
1 | 68 | 54 | 92 | 94 |
[1] |
曹文熙, 杨跃忠, 2002a. 海洋光合有效辐射分布的计算模式[J]. 热带海洋学报, 21(3): 47-55.
|
[2] |
曹文熙, 杨跃忠, 柯天存, 等, 2002b. 水下光谱辐射计光学特性的测试与分析[J]. 热带海洋学报, 21(1): 1-10.
|
[3] |
崔世开, 何剑锋, 何培民, 等, 2014. 北极王湾海域浮游植物对光照和盐度变化的适应性研究[J]. 极地研究, 26(2): 230-237.
|
[4] |
胡自明, 夏奡, 黄云, 等, 2018. 光生物反应器内CO2传输与微藻固碳性能强化[J]. 中国环境科学, 38(10): 3967-3974.
|
[5] |
黄邦钦, 刘光兴, 史大林, 等, 2019. 海洋生态系统储碳过程的多尺度调控及其对全球变化的响应[J]. 中国基础科学, 19(1): 27-29.
|
[6] |
卢蓓, 2017. 湖泊沉水植物适应水体光衰减的初步研究[D]. 武汉: 中国科学院大学(中国科学院武汉植物园): 5-15.
|
[7] |
王积峰, 况润元, 袁爽, 2018. 近岸及内陆二类水体漫衰减系数的遥感反演研究进展[J]. 现代测绘, 41(5): 7-11.
|
[8] |
禹定峰, 邢前国, 施平, 2015. 内陆及近岸二类水体透明度的遥感研究进展[J]. 海洋科学, 39(7): 136-144.
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
/
〈 |
|
〉 |