Marine hydrology

Analysis of interannual variability of sea-surface height in the South China Sea

  • TONG Jing-Quan-1,2 ,
  • LEI Fang-Hui-3 ,
  • MAO Qiang-Wen-1 ,
  • JI Xi-Quan-1
Expand
  • 1.South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China; 2. Graduate University of CAS, Beijing 100039, China
丘福文(1985—), 男, 福建省上杭县人, 硕士, 主要从事物理海洋学研究。

Received date: 2008-12-02

  Revised date: 2009-03-30

  Online published: 2010-07-29

Supported by

国家“973”计划项目(2006CB403603); 国家自然科学基金项目(40876008); 中国科学院知识创新工程项目(KZCX2-YW-214)

Abstract

Fifteen years of interannual variability of the sea-surface height in the South China Sea (SCS) was discussed through the Seasonal-reliant Empirical Orthogonal Function (S-EOF) analysis. The S-EOF analysis illustrates spatial patterns of different seasons and the same temporal variations of the surface circulation in the SCS, not only confirming the winter and summer patterns during monsoons but also presenting new patterns in spring and fall. The result shows that the interannual variability of the sea-surface height in the SCS was closely related to the El Niño and La Niña events. The S-EOF1 shows that the variability of the sea-surface height in the SCS had obvious seasonal oscillation, and this seasonal oscillation was almost steady and relatively weaker during ENSO years. The S-EOF2 shows that there existed a comparatively strong positive anomaly west of the Luzon in the winters of 1998−2001, and it lasted until the spring. The S-EOF3 is mainly characterized by the interannual variability of a series of meso-scale eddies in the western SCS and the strong impact of 1997/1998 El Niño on the circulation in the SCS.

Cite this article

TONG Jing-Quan-1,2 , LEI Fang-Hui-3 , MAO Qiang-Wen-1 , JI Xi-Quan-1 . Analysis of interannual variability of sea-surface height in the South China Sea[J]. Journal of Tropical Oceanography, 2010 , 29(4) : 8 -13 . DOI: 10.11978/j.issn.1009-5470.2010.04.008

References

[1] HO C R, KUO N J, ZHENG Q N, et al. Dynamically active areas in the South China Sea detected from TOPEX/POSEIDON satellite altimeter data[J]. Remote Sens Environ, 2000, 71: 320-328.
[2] SHAW P T, CHAO S Y, FU L L. Sea surface height variations in the South China Sea from satellite altimetry[J]. Oceanologica Acta, 1999, 22(1): 1-17.
[3] HO C R, ZHENG Q N, SOONG Y S, et al. Seasonal variability of sea surface height in the South China Sea observed with TOPEX/POSEIDON altimeter data[J]. J Geophys Res, 2000, 105(6): 13981-13990.
[4] 李立, 吴日升, 郭小钢, 等. 南海的季节环流—TOPEX/POSEIDON高度计运用研究[J]. 海洋学报, 2000, 22(6): 13-26.
[5] 李立, 许金电, 靖春生, 等. 南海海面高度, 动力地形和环流的周年变化——TOPEX/POSEIDON卫星测高应用研究. 中国科学: D辑, 2002, 32(12): 978-994.
[6] WU C-R, CHANG C-W J. Interannual variability of the South China Sea in a data assimilation model[J]. Geophys Res Lett, 2005, 32, L17611.
[7] 郭俊建, 方文东, 方国洪, 等. 基于11年高度计资料的南海表层环流时空变化[J]. 科学通报, 2006, 51: 1-8.
[8] 刘秦玉, 杨海军, 贾英来, 等. 南海海面高度季节变化的数值模拟[J]. 海洋学报, 2001, 23(2): 09-17.
[9] LIU Q, JIANG X, XIE S-P, et al. A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability[J]. J Geophys Res, 2004, 109: C07012.
[10] QU T, KIM Y Y, YAREMCHUK M, et al. Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? [J]. J Clim, 17: 3644-3657.
[11] FANG W, GUO J, SHI P, et al. Low frequency variability of South China Sea surface circulation from 11 years of satellite altimeter data[J]. Geophys Res Lett, 2006, 33: L22612.
[12] ZHENG Z-W, HO C-Rl. Mechanism of weakening of west Luzon eddy during La Nina years[J]. Geophys Res Lett, 2007, 34, L11604.
[13] FANG G., CHEN H, WEI Z, et al. Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade[J]. J Geophys Res, 2006, 111, C11S16.
[14] CHENG X, QI Y. Trends of sea level variations in the South China Sea from merged altimetry data[J]. Glob Planet Change, 2007, 01.005
[15] RONG Z R, LIU Y G, ZONG H B, et al. Interannual sea level variability in the South China Sea and its response to ENSO[J]. Global and Planet Change, 2007, 55: 251-272.
[16] LI L, XU J D, CAI R S. Trends of sea level rise in the South China Sea during the 1990s: An altimetry result[J]. Chinese Science Bulletin, 2002, 47(7): 582-585. 
[17] WANG B, AN S-I. A method for detecting season-dependent modes of climate variability: S-EOF analysis[J]. Geophys Res Lett, 2005, 32, L15710.
[18] FANG W, FANG G, SHI P, et al. Seasonal structures of upper layer circulation in the South China Sea from in situ observation[J]. J Geophys Res, 2002, 107(C11): 3202-3212.
[19] 李立. 我国东南沿岸海面对埃尔尼诺的响应[J]. 台湾海 峡, 1987, 6(2): 132-138.
[20] LEE T, MCPHADEN M J. Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century[J]. Geophys Res Lett, 2008, 35, L01605.
[21] CHU P C, FAN CHENWU, LOZANO C J, et al. An airborne expendable bathythermograph survey of the South China  Sea, may 1995[J]. Geophys Res, 1998, 103: 21637-21652.
[22] 杨海军, 刘秦玉. 南海上层水温分布的季节特征[J]. 海洋与湖沼. 1998, 29(5): 501-507.
[23] LIU W T, XIE XIAO-SU. Spacebased observations of    the seasonal changes of South Asian monsoons and oceanic responses[J]. Geophysical Res Let, 1999, 26(10), 1473-1476.
[24] WANG D, XIE Q, DU Y, et al. The 1997-1998 warm event in the South China Sea[J]. Chin Sci Bull, 2002, 47, 1221-1227.

Outlines

/