Journal of Tropical Oceanography >
Distribution characteristics of critical periods of Rossby waves and sea-surface height anomaly power spectra in the South China Sea
Received date: 2009-04-02
Revised date: 2009-05-22
Online published: 2010-07-29
Supported by
中国科学院知识创新工程重大项目(KZCX1-YW-12-01); 中国科学院领域前沿项目(LYQY200702); 国家自然科学基金(40776008, 40976010)
Using the climatological ocean temperature and salinity data from the Word Ocean Atlas 2001 (WOA01), the authors analyze the distribution of Rossby waves’ critical periods in the South China Sea (SCS) and compare the distribution in the SCS with that in the Northwest Pacific at the same latitude. The result shows that Rossby waves’ critical periods become longer at higher latitudes. Because of the special topography in the SCS, the isolines of Rossby waves’ critical periods in the SCS stretch in a northeast-southwest direction rather than zonally as in the North Pacific. From analyzing the power spectra of the sea-surface height anomalies (SSHA) in the SCS, we find that in the central SCS each of the SSHA power spectral critical periods is close to the local Rossby waves’ critical period and presents similar change of the Rossby critical period as latitude increases. From observations, they validate the theoretical prediction that when the critical period of the wind stress curl power spectrum is equal or smaller than that of the local Rossby waves’ the critical period of the ocean responding power spectrum equals to that of the local Rossby waves’.
YANG Qi,CHEN Gui-ying,SHANG Xiao-dong . Distribution characteristics of critical periods of Rossby waves and sea-surface height anomaly power spectra in the South China Sea[J]. Journal of Tropical Oceanography, 2010 , 29(4) : 20 -25 . DOI: 10.11978/j.issn.1009-5470.2010.04.020
[1] LIN Xiaopei, YANG Jianyan, WU Dexing, et al. Explaining the global distribution of peak-spectrum variability of sea surface height[J]. Geophys Res Lett, 2008, 35: L14602, doi: 10.1029/2008GL034312.
[2] Longuet-Higgins M S. Planetary waves on a rotating sphere[J]. Philos Trans R Soc London, Ser A, 1964, 279 (1379): 446-473.
[3] HU JIANYU, KAWAMURA H, HONG HUASHENG, et al. 3−6 months variation of sea surface height in the South China Sea and its adjacent ocean[J]. J Oceanogr, 2001, 57: 69-78.
[4] STAMMER D. Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements[J]. J Phys Oceanogr, 1997, 27(8): 1743-1769.
[5] Hwang C W, Chen S A. Fourier and wavelet analyses of TOPEX/Poseidon-derived sea level anomaly over the South China Sea: A contribution to the South China Sea Monsoon Experiment[J]. J Geophys Res, 2000, 105(C12): 28785-28804.
[6] Frankignoul C, Muller P, Zorita E. A simple model of the decadal response of the ocean to stochastic wind forcing[J]. J Phys Oceanogr, 1997, 27(8): 1533-1546.
[7] Muller P, Frankignoul C. Direct atmospheric forcing of geostrophic eddies[J]. J Phys Oceanogr, 1981, 11(3): 287-308.
[8] Lippert A, KASe R H. Stochastic wind forcing of baroclinic Rossby waves in the presence of a meridional boundary [J]. J Phys Oceanogr, 1985, 15(2): 184-194.
[9] National Oceanographic Data Center. World Ocean Atlas 2001 (WOA01) [DB/OL]. Silver Spring, MD: National Oceanographic Data Center
[2009−04−02]. http://www.nodc.noaa.gov/OC5/WOA01/qd_ts01.html.
[10] REMOTE SENSING SYSTEMS. QSCAT[DB/OL]. Santa Rosa, CA: Remote Sensing Systems [2009−04−02]. http://www.remss.com.
[11] CHELTON D B, DESZOEKE R A, SCHLAX MG, et al. Geographical variability of the first baroclinic Rossby radius of deformation[J]. J Phys Oceanogr, 1998, 28(3): 433-460.
[12] SHANG XIAODONG, XIA KEQING. Scaling of the velocity power spectra in turbulent thermal convection[J]. Phys Rev E, 2001, 64, 065301.
[13] 是勋刚. 湍流[M].天津: 天津大学出版社, 1994: 60.
[14] ROBERT H S. Introduction to physical oceanography[M]. College Station: Texas A & M University, 2004: 49.
[15] Killworth P D, CHELTON D B, DE SZOEKE R A. The speed of observed and theoretical long extratropical planetary waves[J]. J Phys Oceanogr, 1997, 27(9): 1946-1966.
/
〈 | 〉 |