Marine biology

Molecular cloning and sequence analysis of pancreatic trypsinogen and amylase from orange-spotted grouper (Epinephelus coioides)

Expand
  • 1. College of Life Science and Technology, Jinan University, Guangzhou 510632, China; 2. Guangdong Daya Bay Fisheries Devel-opment Center, Huizhou 516081, China
胡永乐(1986—), 女, 江西省南丰县人, 硕士研究生, 主要从事鱼类代谢基因的研究。E-mail: hu.yongle@yahoo.com.cn

Received date: 2008-09-03

  Revised date: 2009-03-30

  Online published: 2011-10-10

Supported by

国家科技部863项目(2007AA09Z437); 国家自然科学基金项目(30670367); 广东省科技计划项目(2007B020701002,
2005B20301005); 广东省自然科学基金项目(031886); 教育部留学回国人员科研启动基金项目

Abstract

Two full-length cDNA sequence encoding pancreatic trypsinogen (TRY) and amylase (AMY) genes were isolated from orange-spotted grouper (Epinephelus coioides) by RT-PCR and RACE methods. The sequences were deposited in the GenBank database under accession number EU715402 and EU715401. The cDNA of TRY was 911bp, encoding 242 amino acids. The deduced amino acid sequence of trypsinogen has a catalytic triad, and sequence analysis reveals that the identities of trypsinogen amino acid are 59.9%–89.7% between fish and mammals. The obtained AMY was 1657bp in length, encoding 512 amino acids. The deduced amino acid of amylase contains eight α-helical and eight β-sheet structures, and the identities of amylase amino acid among fish, mammals and bird are 70.1%–91.8%, which suggests that amylase is relatively more con-served. This research will help to further study the regulation of the two genes and to develop dietary additives to stimulate their expression levels.

Cite this article

HU Yong-le,LIANG Xu-fang,WANG Lin,LI Guan-gui,LIU Xiu-xia,WANG Yun-xin . Molecular cloning and sequence analysis of pancreatic trypsinogen and amylase from orange-spotted grouper (Epinephelus coioides)[J]. Journal of Tropical Oceanography, 2010 , 29(5) : 125 -131 . DOI: 10.11978/j.issn.1009-5470.2010.05.125

References

[1]       尾崎久雄. 鱼类消化生理: 上册[M], 上海: 上海科学技术出版社, 1983.

[2]       荻野珍吉. 鱼类的营养和饲料[M], 北京: 海洋出版社, 1987.

[3]       OSSAIN M A R, TAGAWA M, MASUDA R, et al. Changes in growth performance and proximate composition in Japanese flounder during metamorphosis[J]. Fish Biol, 2003, 63: 1283-1294.

[4]       WANG S, MAGOULAS C, HICKEY D A. Isolation and characterization of a full-length trypsin-encoding cDNA clone from the Lepidopteran insect, Choristoneura fumi ferana[J]. Gene, 1993, 136 (122): 375-376.

[5]       JANACEK S. Sequence similarities and evolutionary relationships of microbial, plant and animal α-amylases[J]. Eur J Biochem, 1994, 224: 519-524.

[6]       SUSAN E D, SUZAN M, JEFFREY W G. Molecular analysis of the amylase gene and its expression during development in the winter flounder, Pleuronectes americanus[J]. Aquaculture, 2000, 190: 247-260.

[7]       倪寿文. 草鱼、鲤、鲢、鳙和淀粉酶比较研究[J]. 大连水产学院学报, 1992, 7 (1): 24-31.

[8]       SUZUKI T, SRIVASTAVA A S, KUROKAWA T. cDNA cloning and phylogenetic analysis of pancreatic serine proteases from Japanese flounder, Paralichthys olivaceus[J]. Comp Biochem Physiol B, 2002, 131: 63-70.

[9]       TITANI K, ERICSSON L H, NEURATH H, et al. Amino acid sequence of dogfish trypsin[J]. Biochem, 1975, (14): 1358-1366.

[10]    YOSHINAKA R, SATO M, SUZUKI T, et al. Enzymatic characterization of anionic trypsin of catfish (Parasilurus asotus)[J]. Comp Biochem Physiol B, 1984, 77: 1-6.

[11]    MALE R, LORENS J R, SMALKS A O, et al. Molecular cloning and characterization of anionic and cationic variants of trypsin from Atlantic salmon[J]. Eur J Biochem, 1995,  232: 677-685.

[12]    SUZUKI T, SRIVASTAVA A S, KUROKAWA T. cDNA cloning and phylogenetic analysis of pancreatic serine proteases from Japanese Bounder, Paralichthys olivaceus[J]. Comp Biochem Physiol B, 2002, 131: 63-70.

[13]    COWEY C B, SARGENT J R. NUTRITION. Fish physiology, Vol. VIII[M]//HOAR W S, RANDALL D J, BRETT J R.. New York: Academic Press; 1979: l-69.

[14]    NISHIDE T, NAKAMURA Y, EMI M, et al. Primary structure of human salivary α-amylase gene[J]. Gene, 1986, 41: 299-304.

[15]    HORII A, EMI M, TOMITA N, et al. Primary structure of human pancreatic a-amylase gene: its comparison with human salivary α-amylase gene[J]. Gene, 1987, 60: 57-64.

[16]    GUMUCIO D L, WIEBAUER K, CALDWELL R M, et al. Concerted evolution of human amylase genes[J]. Mol Cell Biol, 1988, 8: 1197-1205.

[17]    YOKOUCHI H, HORII A, EMI M, et al. Cloning and characterization of a third type of human α-amylase gene, AMY2B[J]. Gene, 1990, 90: 281-286.

[18]    周景祥, , , . 鱼类消化酶的活性及环境条件的影响[J]. 北华大学学报: 自然科学版, 2001, 2(1): 70-83.

[19]    余德逛, 王广军, 谢骏, . 鞋带石斑鱼消化器官的蛋白酶和淀粉酶活力变化[J]. 浙江海洋学院学报: 自然科学版, 2007, 26(3), 246-251.

[20]    BITTERLICH G. Digestive enzyme pattern of two stomachless filter feeders, silver carp, Hypophthamichthys molitrix, and bighead carp, Aristichthys nobiliis[J]. Rich J Fish Biol, 1985, 27: 103-112.

[21]    TAKII K, SHIMENO S, TAKEDA M. Changes in digestive enzyme activities in eel after feeding[J]. Bull Jpn Sot Sci Fish, 1985, 51: 2027-2031.

[22]    MUNILLA-MORGN R, STARK J R. Metabolism in marine flatfish VI. Effect of nutritional state on digestion in turbot, Scophthulmus maximus (L.)[J]. Comp Biochem Physiol B, 1990, 95: 625-634.

[23]    SABAPATHY U, TEO L H. A quantitative study of some digestive enzymes in the rabbitfish, Siganw canaliculatus, and the sea bass, Lates calcarifer[J]. Fish Biol, 1993, 42: 595-602.

[24]    LUO Z, LIU Y J, MAI K S, et a1. Effect of dietary lipid level ong rowth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in Hoating netcages [J]. Aquaculture International, 2005, 13: 257-269.


 

Outlines

/