Journal of Tropical Oceanography >
Effects of turbulence on phytoplankton: species differences
Received date: 2009-03-20
Revised date: 2010-04-23
Online published: 2010-12-15
Supported by
中国科学院南海海洋研究所青年基金项目(SQ200815); 中国科学院、国家外国专家局创新团队国际合作伙伴计划(KZCX2-YW-
T001); 国家自然科学基金项目(40676074, 40125016)
Turbulence is common in marine waters. Turbulence can affect the thickness of micro-boundary layer surrounding an algal cell, and therefore affects the gradient of nutrients across the micro-boundary layer. The gradient would determine uptake of nutrients, and hence the growth rate. Ten algal species were studied, including Nitzschia closterium, Skeletonema costatum, Prorocentrum dentatum, Fibrocapsa japonica, Heterosigma akashiwo, Platymonas subcordiformis, Platymonas helgolandica var Tsingtaoensis, Pyramimonas sp. Pyramidomonas, Phaeocystis spp, and Prymnesium patelliferium. It is found that the growth rates of those species were significantly influenced by 100r•min?1 stirring (P<0.05). Little effect was found in green algae growth. The 100r•min?1 stirring enhanced the growth of Phaeocystis spp and Prymnesium patelliferium, stimulated these species to reach a higher maximum biomass than under no-stirring condition, and prolonged the growth time of algae before reaching the maximum. The 100r•min?1 turbulence reduced the growth of Nitzschia closterium, Skeletonema costatum, Prorocentrum dentatum, and Fibrocapsa japonica. Different algae have different responses to turbulence, and it is believed that turbulence is an important factor in phytoplankton interspecies competition.
Key words: turbulence; alga; growth rate; maximum biomass
LI Dong-mei,GAO Yong-li,TIAN Tian,LAU Cyrus,YIN Ke-dong . Effects of turbulence on phytoplankton: species differences[J]. Journal of Tropical Oceanography, 2010 , 29(6) : 65 -70 . DOI: 10.11978/j.issn.1009-5470.2010.06.065
[1] HELLE P, WILLERN S, BO BARKER J. Diffusive boundary layers of the colony-forming plankton alga Phaeocystis sp.—implications for nutrient uptake and cellular growth[J]. Limnol Oceanogr, 1999, 44(8): 1959–1967.
[2] FISHER T R, PEELE E R, AMMERMAN J W, et al. Nutrient limitation of phytoplankton in Chesapeake Bay[J]. Mar Ecol Prog Ser, 1992, 82(1): 51-63.
[3] FALKOWSKI P G, LAROCHE J. Acclimation to Spectral Irradiance in Algae[J]. Journal of Phycology, 2004, 27(1): 8-14.
[4] TAYLAR R, FLETCHER. R L, RACEN. J A. Preliminary studies on the growth of selected ‘green tide’ algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate [J]. Botanica Marina , 2001, 44(4): 327-336.
[5] MARTA E, MIQUEL A ,CELIA M. Effects of turbulence on the composition of phytoplankton assemblages in marine microcosms[J]. Mar Ecol Prog Ser, 1987, 38: 267-281.
[6] YIN K D. Monsoonal influence on seasonal variations in nutrients and phytoplankton biomass in coastal waters of Hong Kong in the vicinity of the
[7]
[8] GUOBBELAAR J U. Turbulence in mass algal culture and the role of light/dark fluctuations[J]. Journal of Applied Phycology, 1994, 6: 189-194.
[9] PATEL D, THAKE B, THORNTON D C O. Effect of light and turbulent mixing on the growth of Skeletonema costatum (Bacillariophyceae) [J]. Marine Biology, 2005, 146: 633-644.
[10] DAVIDSON K, WOOD G, JOHN E H, et.al. An investigation of non-steady-state algal growth.Ⅰ. An experimental mode system [J]. Journal of Plankton Research, 1999, 21(5): 811-837.
[11] PETERSEN J E, SANFORD L P, KEMP W M. Coastal plankton responses to turbulent mixing in experimental ecosystems[J]. Mar Ecol Prog Ser, 1998, 171: 23-41.
[12] VRIELING E G, KOEMAN R P T, NAGASAKI K et al. Chattonella and Fibrocapsa (Raphidophyceae): First observation of, potentially harmful, red tide organisms in Dutch coastal waters [J].
[13] HARRISON P J, WATERS R E, TARLAOR F J R.A broad spectrum artificial seawater medium for coastal and ocean phytoplankton[J]. J Phycol. 16: 28-35, 1980
[14] MALDONADO M T, PRICE N M. Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae) [J]. J phycol, 2001, 37(2): 298-310.
[15] SCHONE H. Untersuchungen zur kologishen bedeutung des seegangs fur das plankton mit besonder berucksichtigung mariner kieselalgen[J]. Int Rev ges Hydrobiol, 1970, 55: 595-677.
[16] POLLINGHER U, ZEMEL E. In situ and experimental evidence of the influence of turbulence on cell division processes of Peridinium cinctum forma westii (Lemm.) Lefevre. Br[J]. Journal of Phycology, 1981, 16: 281-287.
[17] GARCIA C F, CONTRERAS G A, MAZZUCA S T, et al. Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum[J]. Process Biochem, 2000, 35: 1045-1050.
[18] 陈炳章, 王宗灵, 朱明远, 等. 温度、盐度对具齿原甲藻生长的影响及其与中肋骨条藻的比较[J]. 海洋科学进展, 2005, 23(1): 60-64.
[19] WILLIAM H T, CARL H G. Effects of small-scale turbulence on microalgae[J]. Journal of Applied Phycology, 1990, 2: 71-77.
[20] WHITE A W. Growth inhibition caused by turbulence in the toxic marine dinoflagellate Gonyaulax excavata[J]. Fish.Res. Bd Canada, 1976, 33: 2598-2602.
[21] ROUSSEAU D, VAULOT R, CASOTTI V, et al. Phaeocystis (Prymnesiophysae) life cycle: Evidences and hypotheses[J]. J Mar Syst, 1994, 55: 23-40.
/
〈 | 〉 |