Journal of Tropical Oceanography >
Development of mangrove monitoring technology using high spatial-resolution satellite images
Received date: 2009-09-08
Revised date: 2010-02-27
Online published: 2011-07-20
Remote sensing plays a very important role in mangrove monitoring. First, based on systematically summarized mangrove spectral characteristics, this paper reviews methods of mangrove monitoring with leaf area index (LAI), vegetation index and texture. Second, this paper gives parameters of some satellites that have high spatial resolution and have been working in mangrove monitoring successfully, such as SPOT5, IKONOS, QuickBird, and IRS-P6. Third, the article introduces methods of extracting ecological parameters including distinction in and among populations, biomass and state of health, and compares their accuracy. Finally, this paper briefly discusses the technology development of monitoring mangroves using the high spatial-resolution satellite remote sensing information.
Key words: mangrove; remote sensing; high spatial resolution
SU Xiu,ZHAO Dong-zhi ,HUANG Feng-rong,WU Tao,WANG Xiang, . Development of mangrove monitoring technology using high spatial-resolution satellite images[J]. Journal of Tropical Oceanography, 2011 , 30(3) : 38 -45 . DOI: 10.11978/j.issn.1009-5470.2011.03.038
[1] 范航清. 红树林——海岸环保卫士[M]. 南宁: 广西科技出版社, 2000: 2.
[2] 腾骏华, 刘宇, 顾德宇. 红树林智能遥感分类方法研究[J].台湾海峡, 2000, 16(3): 331-338.
[3] 李春干. 红树林遥感成图研究综述[J]. 中南林业调查规划, 2002, 21(4): 52-58.
[4] GREEN E P, CLARK C D, MUMBY P J, et al. Remote sensing techniques for mangrove mapping[J]. Int J of Remote Sensing, 1998, 19(5): 935-956.
[5] DUTRIEUX E, DENIS J, POPULUS J. Application of SPOT data to a base-line ecological study the Mahakam Delta mangroves East Kalimantan Indonesia[J]. Oceanologica Acta, 1990, 13(3): 317-326.
[6] JENSEN J R, RAMSET E, DAVIS B A, et al. The measurement of mangrove characteristics in south-west Florida using SPOT multispectral data[J]. Geocarto International, 1991, 6(2): 13-21.
[7] RAMIREZ-GARCIA P, LOPEZ-BLANCO J, OCANA D. Mangrove vegetation assessment in the Santiago River mouth, Mexico, by means of supervised classification using Landsat TM imagery[J]. Forest Ecology and Management, 1998, 105(1/3): 217-229.
[8] ROGERS D J, HAY S I, PACKER M J, et al. Mapping land-cover over large areas using multispectral data derived from the NOAA-AVHRR: a case study of Nigeria[J]. Int J of Remote Sensing, 1997, 18(15): 3297-3303.
[9] GAO J. A hybrid method toward accurate mapping of mangroves in a marginal habitat from SPOT multispectral data[J]. Int J of Remote Sensing, 1998, 19(10): 1887-1899.
[10] 翁强, 卢昌义. 卫星遥感技术在红树林生态监测与研究中的应用进展[J]. 三明学院学报, 2006, 23(2): 141-147.
[11] 于祥, 赵冬至, 张丰收. 遥感技术在红树林生态监测与研究中的应用进展[J]. 海洋环境科学, 2005, 24(1): 76-80.
[12] 肖海燕, 曾辉, 昝启杰, 等. 基于高光谱数据和专家决策法提取红树林群落类型信息[J]. 遥感学报, 2007, 11(4): 531-537.
[13] 于祥, 赵冬至, 张丰收. 红树林的高光谱分析[J]. 滨州学校学报, 2006, 22(6): 53-56.
[14] 翁强, 卢昌义. 红树植物地面反射光谱特征研究[J]. 福建林业科技, 2006, 33(3): 14-19.
[15] 郎惠卿. 中国湿地研究和保护[M]. 上海: 华东师范大学出版社, 1998: 415-419.
[16] 李伟, 崔丽娟, 张曼胤, 等. 遥感技术在红树林湿地研究中的应用述评[J]. 林业调查规划, 2008, 33(5): 1-7.
[17] 李爽, 张二勋. 基于决策树的遥感影像分类方法研究[J].地域研究与开发, 2003, 22(1): 17-21.
[18] 赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003: 372-373.
[19] CRIST E P, CICONE R C. A physically based transformation of thematic mapper data: the TM Tassled Cap[J]. IEEE Transaction on Geoscience and Remote Sensing, 1984, 22(3): 256-263.
[20] LOGAN T L. Proceedings on the symposium on machine processing of remote sensing of remotely sensed data[J]. Optional Landsat transforms for forest applications, 1983, 5: 146-153.
[21] 陈忠. 高分辨率遥感图像分类技术研究[D]. 北京: 中国科学院遥感应用研究所, 2006: 2
[22] DEEUDOMCHAN K, POTIRACHA Y, ANAN T. Mangrove change after Tsunami in PHANG-NGA, Thailand[C]// Asian Conference on Remote Sensing. Ulaanbaatar (MN), 2006: 1087-1092.
[23] SATAPATHY D R, KRUPADAM R J, KUMAR L P, et al. The application of satellite data for the quantification of mangrove loss and coastal management in the Godavari estuary, East Coast of India[J]. Environmental Monitoring and Assessment, 2007, 134(1/3): 453-469 .
[24] EVERITT J H, YANG CHENGHAI, SRIHARAN S, et al. Using high resolution satellite imagery to map black mangrove on the Texas Gulf Coast[J]. Journal of Coastal Research, 2008, 24(6): 1582-1586.
[25] 田新光, 张继贤, 张永红. 面向对象的红树林信息提取[J].海洋测绘, 2007, 27(2): 41-44.
[26] 乐通潮, 陈杰, 罗彩莲, 等. 决策树分类在红树林自然保护区SPOT影像解译中的应用[J]. 福建林业科技, 2008, 35(4): 115-118.
[27] 方圣辉, 佃袁勇, 周源. 基于Ikonos数据的红树分类方法研究[J]. 测绘信息与工程, 2005. 30(4): 5-6.
[28] VAIPHASA C, ONGSOMWANG S, VAIPHASA T, et al. Tropical mangrove species discrimination using hyperspectral data: A laboratory study[J]. Estuarine, Coastal and Shelf Science, 2005, 65(1/2): 371-379.
[29] ALVIN L M S, MAZLAN H. Classification of hyperspectral data for land cover mapping: is there any significant improvement[J]. Geoinformation Science Journal, 2003, 3(1): 74-79.
[30] HELD A, TICEHURST C, LYMBURNER L, et al. High resolution mapping of tropical mangrove ecosystems using hyperspectral and radar remote sensing[J]. Int J of Remote Sensing, 2003, 24(13): 2739-2759.
[31] NEUKERMANS G, DAHDOUH-GUEBAS F, KAIRO J G, et al. Mangrove species and stand mapping in Gazi Bay (Kenya) using Quickbird satellite imagery[J]. Journal of Spatial Science, 2008, 53(1): 75-86.
[32] WANG LE, SOUSA W P, GONG PENG, et al. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama[J]. Remote Sensing of Environment, 2004, 91(3/4): 432-440.
[33] WANG LE, SOUSA W P, GONG PENG, et al. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery[J]. Int J of Remote Sensing, 2004, 25(24): 5655-5668.
[34] LIU Z G, LI J, LIM B L, et al. Object-based classification for mangrove with VHR remotely sensed image[J]. Proc SPIE, 2007, 6752(3): 83-87.
[35] 黎夏, 叶嘉安, 王树功, 等. 红树林湿地植被生物量的雷达遥感估算[J]. 遥感学报, 2006, 10(3): 387-396.
[36] MATHER P M. Computer processing of remotely-sensed images: an introduction[M]. Chichester: John Wiley & Sons, 2004: 46
[37] FOODY G M, CUTLER M E, MCMORROW J, et al. Mapping the biomass of Bornean tropical rain forest from remotely sensed data[J]. Global Ecology & Biogeography, 2001, 10(4): 379-386.
[38] WANG Y, IMHOFF M L. Simulated and observed L-HH radar backscatter from tropical mangrove forests[J]. Int J of Remote Sensing, 1993, 14(15): 2819-2828.
[39] MOUGIN E, PROISY C, MARTY G, et al. Multifrequency and multipolarization radar backscattering from mangrove forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 94-102.
[40] PROISY C, COUTERON P, FROMARD F. Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images[J]. Remote Sensing of Environment, 2007, 109(3): 379-392.
[41] EVERITT J H, JUDD F W, ESCOBAR D E, et al. Integration of remote sensing and spatial information technologies for mapping black mangrove on the Texas Gulf Coast[J]. Journal of Coastal Rresearch, 1996, 12(1): 64-69.
[42] KOVACSA J M, WANG JINFEI, FLORES-VERDUGO F. Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific[J]. Estuarine, Coastal and Shelf Science, 2005, 62: 377-384.
[43] 李开丽, 蒋建军, 茅荣正, 等. 植被叶面积指数遥感监测模型[J]. 生态学报, 2005, 25(6): 1491-1496.
[44] RAMSEY E W, JENSEN J R. Remote sensing of mangrove wetlands: relating canopy spectra to site-specific data[J]. Photogrammetric Engineering and Remote Sensing, 1996, 62(31): 939-948.
[45] ZHU BIN, CHEN H C, RAMSEY M. Creating a Large-Scale Content-Based air photo image digital library[J]. IEEE Transactions on Image Processing, 2000, 9(1): 163-167.
[46] AGOURIS P, CARSWELL J, STEFANIDIS A. An environment for content-based image retrieval from large spatial databases[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(4): 263-272.
[47] 廖静娟, 邵芸, 郭华东, 等. 水稻生长期微波介电特性研究[J]. 遥感学报, 2002, 6(1): 19-23.
/
〈 | 〉 |