[1] BENNETT A F. Monographs Inverse Methods in Physical Oceaography[M]//Cambridgeon Mechanics and Applied Mathematics. Cambridge: Cambridge University Press, 1992: 346. 
 [2] GHIL M, MALANOTTE-RIZZOLI P, Data Assimilation in Meteorology and Oceanography[J]. Adv Geophys, 1991, 33: 141-266. 
 [3] BOUTTIER F, COURTIER P. Data assimilation concepts and methods[M]// ECMWF. Meteorological Training Course Lecture Series. 1999: 1-75. 
 [4] THEPAUT J N, HOFFMAN R N, COURTIER P. Interactions of dynamics and observations in a 4-dimensional variational assimilation[J]. Mon Weather Rev, 1993, 119: 3393-3414. 
 [5] ZUPANSKI M. Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment[J]. Mon Weather Rev, 1993, 121: 2396-2408. 
 [6] ZUPANSKI D, MESINGER F. Four-dimensional variational data assimilation of precipiation data[J]. Mon Weather Review, 1995. 123: p. 1112-1127. 
 [7] ZUPANSKI D. A general weak constraint applicable to operational 4DVAR data assimilation systems[J]. Mon Weather Rev, 1997, 125: 2274-2292. 
 [8] SASAKI Y. Some basic formalisms in numerical variational analysis[J]. Mon Weather Rev, 1970, 98: 875–883. 
 [9] LEDIMET F X, TALAGRAND O. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects[J]. Tellus, 1986, 38A: 97–110.
 [10] DERBER J C. Variational four-dimensional analysis using quasi-geostrophic constraints[J]. Mon Weather Rev, 1987, 115: 998–1008.
 [11] TALAGRAND O, COURTIER P. Variational assimilation of meteorological observations with the adjoint vorticity equation. Part I: Theory[J]. Quart J Roy Meteor Soc, 1987, 113: 1311-1328. 
[12] COURTIER P, TALAGRAND O. Variational assimilation of meteorological observations with the direct and adjoint shallow-water equation[J]. Tellus, 1992, 42A: 531–549. 
[13] THEPAUT J N, COURTIER P. Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model[J]. Quart J Roy Meteor Soc, 1991, 117, 1225-1254.
 [14] NAVON I M, ZOU X, DERBER J, SELA J. Variational data assimilation with an adiabatic version of the NMC spectral model[J]. Mon Weather Rev, 1992, 120: 1433-1446.
 [15] RABIER F, COURTIER P. Four-dimensional assimilation in the presence of baroclinic instability[J]. Quart J Roy Meteor Soc. 1992, 118: 649–672.
 [16] ZOU X, NAVON I M, SELA J. Control of gravitational oscillations in variational data assimilation[J]. Mon Weather Rev, 1993, 121: 272–289.
 [17] ANDERSSON E, PAILEUX J, THE′PAUT J N, et al. Use of cloud-cleared radiances in three/four-dimensional variational data assimilation[J]. Quart J Roy Meteor Soc, 1994, 120: 627–653.
 [18] COURTIER P, THE′PAUT J N, HOLLINGSWORTH A. A strategy for operational implementation of 4D-Var, using an incremental approach[J]. Quart J Roy Meteor Soc, 1994, 120: 1367-1388.
 [19] ZOU X L, XIAO Q N. Studies on the initialization and simulation of a mature Hurricane using a variational bogus data assimilation scheme[J]. J Atoms Sci, 2000, 57(6): 836-860. 
 [20] PENG S Q, ZOU X. Assimilation of NCEP multi-sensor hourly rainfall data using 4D-Var approach: a case study of the squall line on 5 April 1999[J]. Meteor Atmos Phys, 2002, 81: 237–255. 
 [21] PENG S Q, ZOU X. Assimilation of ground-based GPS zenith total delay and rain gauge precipitation observations using 4D-Var and their impact on short-range QPF[J]. J Meteor Soc Jpn, 2004, 82: 491–506. 
 [22] BENNETT A F, MCINTOSH P C. Open ocean modeling as an inverse problem: tidal theory[J]. J Phys Oceanogr, 1982, 12: 1004-1018. 
 [23] YU L, O’BRIEN J J. Variational estimation of the wind stress drag coefficient and the oceanic eddy viscosity profile[J]. J Phys Oceanogr, 1991, 21: 709–719. 
 [24] DAS S K, LARDNER R W. On the estimation of parameters of hydraulic models by assimilation of periodic tidal data[J]. J Geophys Res, 1991, 96 (C8): 15187–15196. 
 [25] SEILER U. Estimation of open boundary conditions with the adjoint method[J]. J Geophys Res, 1993, 98: 22855-22870. 
 [26] LU J, HSIIEH W E. Adjoint data assimilation in coupled atmosphere–ocean models: determining initial model parameters in a simple equatorial model[J]. Quart J Roy Meteor Soc, 1997, 123: 2115-2139. 
 [27] LU J, HSIEH W E. Adjoint data assimilation in coupled atmosphere–ocean models: determining initial conditions in a simple equatorial model[J]. J Meteor Soc Jpn, 1998a, 76: 737-748. 
 [28] LU J, HSIEH W E. On determining initial conditions and parameters in a simple couples atmosphere–ocean model by adjoint data assimilation[J]. Tellus, 1998b, 50A: 534-544. 
 [29] HEEMINK A W, MOUTHAAN E A, ROEST M R T, et al. Inverse 3D shallow water flow modeling of the continental shelf[J]. Continental Shelf Res, 2002, 22: 465-484. 
 [30] ZHANG A, PARKER B B, WEI E. Assimilation of water level data into a coastal hydrodynamic model by an adjoint optimal technique[J]. Continental Shelf Res, 2002, 22: 1909-1934. 
 [31] ZHANG A J, WEI E, PARKER B B. Optimal estimation of tidal open boundary conditions using predicted tides and adjoint data assimilation technique[J]. Continental Shelf Res, 2003, 23: 1055-1070. 
 [32] 吕咸青, 田纪伟, 吴自库. 渤、黄海的底摩擦系数 [J]. 力学学报, 2003, 35(4): 465-468 . 
 [33] LIONELLO P, SANNA A, ELVINI E, et al. A data assimilation procedure for operational prediction of storm surge in the northern Adriatic Sea[J]. Continental Shelf Research, . 2006, 26: 539-553. 
 [34] MADSEN H, JAKOBSEN F. Cyclone induced storm surge and flood forecasting in the northern Bay of Bengal [J]. Coastal Engineering, 2004, 51: 277-296. 
 [35] PENG S Q, XIE L. Effect of determining initial conditions by four-dimensional variational data assimilation on storm surge forecasting[J]. Ocean Modelling, 2006, 14: 1-18. 
 [36] BLUMBERG A F, MELLOR G L. A description of a three- dimensional coastal ocean circulation model[C]//HEAPS N S. Three Dimensional Coastal Ocean Models. Washington, DC: American Geophysical Union, 1987: 1-16. 
 [37] Mellor G. L. Users guide for a three-dimensional, primitive equation, numerical ocean model (June 2003 version)[C]// Prog in Atmos. and Ocean Sci. Princeton University, 2003: 1-53. 
 [38] XIE L, PIETRAFESA L J, PENG M. Incorporation of a mass-conserving inundation scheme into a three- dimensional storm surge model[J]. J Coastal Res, 2004, 20: 1209-1223. 
 [39] PENG M, XIE L, PIETRAFESA L J. A numerical study of storm surge and inundation in the Croatan-Albemarle- Pamlico Estuary System[J]. Estuarine, Coastal and Shelf Sciences, 2004, 59: 121-137. 
 [40] PENG M, XIE L, PIETRAFESA L J. A numerical study on hurricane induced storm surge and inundation in Charleston Harbor, South Carolina[J]. J Geophys Res, 111, C08017.