Marine physics

A numerical study on hypoxia and primary production in the Pearl River Estuary in summer using the modified RCA water quality model

  • ZHANG Heng ,
  • LI Shi-yu
Expand
  • School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

Received date: 2008-11-25

  Revised date: 2009-02-11

  Online published: 2001-01-08

Abstract

The RCA water quality model was incorporated with the sediment module and the light shading effect due to the high turbidity in the Pearl River Estuary (PRE). The modified RCA water quality model was then applied to the PRE. Results show that the modified RCA model can reproduce the distribution of nutrients, phytoplankton and dissolved oxygen (DO) in the PRE successfully, which means the modified model can capture the main processes of water quality in the PRE. In the wet season, huge amount of fresh water enters the PRE and results in a river plume. Particulate organic matter (POM) deposits intensely in specific areas of western and central shoal of the Lingdingyang Estuary and outside Modaomen as a result of the plumes. Furthermore, high deposition rate of POM in specific areas leads to high sediment oxygen demand (SOD), which coincides with the areas with strong stratification. High SOD and strong stratification lead to hypoxia. On the shelf areas, primary production increases as the suspended sediment concentration decreases, but the increasing primary production does not result in hypoxia as the marine particulate organic carbon (POC) spreads all over the shelf and the stratification is weak.

Cite this article

ZHANG Heng , LI Shi-yu . A numerical study on hypoxia and primary production in the Pearl River Estuary in summer using the modified RCA water quality model[J]. Journal of Tropical Oceanography, 2010 , 29(1) : 20 -31 . DOI: 10.11978/j.issn.1009-5470.2010.01.020

References

[1] 赵焕庭. 珠江河口演变[M]. 北京: 海洋出版社, 1990.
[2] GUAN Wei-Bing, WONG Lai-Ah, XU Dong-Feng. Modeling nitrogen and phosphorus cycles and dissolved oxygen in the Zhujiang River Estuary, Part I. Model development[J]. Acta Oceanol Sin, 2001, 20(4): 493-504.
[3] GUAN Wei-Bing, WONG Lai-Ah, XU Dong-Feng. Modeling nitrogen and phosphorus cycles and dissolved oxygen in the Zhujiang River Estuary, Part II. Model results[J]. Acta Oceanol Sin, 2001, 20(4): 504-514.
[4] 林卫强, 李适宇. 珠江口水域化学耗氧量、溶解氧、无机磷与有机磷的三维水质数学模拟[J]. 海洋学报, 2003, 25(3): 129-137.
[5] 林卫强. 三维水环境数学模型的开发及其在珠江口的应用[D]. 广州: 中山大学, 2003.
[6] 罗琳, 李适宇, 王东晓. 珠江河口夏季缺氧现象的模拟[J].水科学进展, 2008, 19(5): 729-735.
[7] FIZPARTICK J J. A user’s guide for RCA: release 3.0 [R]. HydroQual Inc, Magwag, New Jersey, 2004.
[8] AMBROSE R B, WOOL T A., MARTIN J L. The water quality analysis simulation program, WASP5, Part A: Model documentation[M]. US Environmental Protection Agency, Athens, Georgia, 1993.
[9] DI TORO D.M. Sediment flux modelling[M]. New York: John Wiley & Sons, 2001.
[10] BLUMBERG A F. A Primer for ECOMSED user manual: version 1.3[R]. HydroQual Inc, Mahwah, New Jersey, 2002.
[11] DI TORO D M. Optics of turbid estuarine waters: approximations and applications[J]. Water Res, 1978, 12: 1059-1068.
[12] MAO Qing-Wen, SHI Ping, YIN Ke-Dong, et al. Tides and tidal currents in the Pearl River Estuary[J]. Cont Shelf Res, 2004, 24: 1797-1808.
[13] 侯卫东, 陈晓宏, 江涛, 等. 西北江三角洲网河径流分配的时间变化分析[J]. 中山大学学报: 自然科学版, 2004, 43(增刊): 204-207.
[14] WONG L A, CHEN J C, XUE H., et al. A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters: 1. Simulations and comparison with observations[J]. J Geophys Res, 2003, doi: 10.1029/2002JC001451.
[15] JOS V G, LLAAS-JAN V H, DIRK S, et al. Pearl River Delta water quality model: final study report[R]. W L Delft hydraulics, Netherlands, 2007.
[16] 刘景钦. 珠江口八大口门营养盐的分布及入海通量的研究[D]. 青岛: 中国海洋大学, 2006.
[17] 陈金斯, 李飞永, 洪华生. 珠江口海区悬浮颗粒物质研究 II. 有机碳和氮的来源、分布和转移[J]. 热带海洋学报, 1988, 7(3): 90-98.
[18] JIA Guo-Dong, Peng Pin-An. Temporal and spatial variations in signatures of sedimented organic matter in Lingding Bay (Pearl estuary), southern China[J]. Mar Chem, 2003, 82: 47-54.
[19] HU Jian-Fang, PENG Pin-An, JIA Guo-Dong, et al. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, South China[J]. Mar Chem, 2006, 98: 274-285.
[20] 岳维忠, 黄小平, 孙翠慈. 珠江口表层沉积物中氮、磷的形态分布特征及污染评价[J].海洋与湖沼, 2007, 38(2): 111-117.
[21] 张德荣, 陈繁荣, 杨永强, 等. 夏季珠江口外近海沉积物/水界面营养盐的交换通量[J]. 热带海洋学报, 2005, 24(6): 53-60.
[22] 潘建明, 周怀阳, 扈传昱, 等. 夏季珠江口沉积物中营养盐剖面分布和界面交换通量[J]. 海洋学报, 2005, 24(3): 52-59.
[23] CHEN Jay-Chung, HEINKE G W, ZHOU Ming-Jiang. The Pearl River Estuary pollution project[J]. Cont Shelf Res, 2004, 24: 1739-1744.
[24] DIAZ R J. Overview of hypoxia around the world[J]. J Environ Qual, 2001, 30(2): 275-281.
[25] MORSE J W, ROWE G T. Benthic biogeochemistry beneath the Mississippi river plume[J].Estuaries, 1999, 22: 206-214.
[26] LANSARD B, RABOUILLE C, DENIS L, et al. In situ oxygen uptake rates by coastal sediments under the influence of the Rhone River (NW Mediterranean Sea) [J]. Cont Shelf Res, 2008, 28: 1501-1510.

 

Outlines

/