Marine Hydrology

Responses of equatorial ocean to rare typhoon Vamei

  • Chan-Hai-Xia- ,
  • Guan-Yu-Beng- ,
  • Wang-Dong-Xiao- ,
  • Huang-Jian-Beng
Expand
  • 1. Key laboratory of Semi-Arid Climate Change , Ministry of Education , Lanzhou University , Lanzhou 730000, China ; 2. State Key Laboratory of Tropical Oceanography South China Sea Institute of Oceanology , CAS , Guangzhou 510301, China

Received date: 2010-06-29

  Revised date: 2010-10-28

  Online published: 2012-03-13

Abstract

We use GHRSST L4, QuikSCAT, OAFLUX and SeaWiFS L3 data sets to analyze the change of sea surface temperature (SST), sensible heat flux, latent heat flux and chlorophyll - a concentration in the equatorial ocean where Typhoon Vamei passed through. Before Typhoon Vamei was generated, there was a significant cyclonic vortex over the equatorial region of the southern South China Sea, the average SST in the coastal region of South China Peninsula was lower than other regions, and northeasterly wind prevailed in this area. The latent heat flux and sensible heat flux were larger in the genesis location of Typhoon Vamei . As usual, the cooling occurred on the right side of the track of Typhoon Vamei. The SST decreased by about 2 - 2.5 ℃ . However, compared to higher-latitude typhoons, the cooling was much small in this case. The region where SST decreased significantly was between the east of the Malay Peninsula and the Strait of Malacca. Similar to higher-latitude typhoons, Typhoon Vamei increased chlorophyll- a concentration in the coastal area between Sumatra and the Malay Peninsula by 0.6 mg·m - 3 or more compared to the pre-typhoon value.

Cite this article

Chan-Hai-Xia- , Guan-Yu-Beng- , Wang-Dong-Xiao- , Huang-Jian-Beng . Responses of equatorial ocean to rare typhoon Vamei[J]. Journal of Tropical Oceanography, 2012 , 31(1) : 28 -34 . DOI: 10.11978/j.issn.1009-5470.2012.01.028

References

[1] GRAY W. Global view of tropical disturbances and storms[J]. Mon Wea Rev, 1968, 96: 669-700. [2] ANTHES R A. Tropical cyclones: their evolution, structure and effects [M]. Boston: American Meteorological Society, 1982: 46-54. [3] HOLLIDAY C R, THOMPSON A H. An unusual near-equatorial typhoon [J]. Mon Wea Rev, 1986, 114: 2674-2677 [4] McBRIDE J L. Tropical cyclone formation[M]//ELSBERRY R L. Global perspective on tropical cyclones. Gevena: World Meteorological Organization, 1995: 63-105. [5] FORTNER L E. Typhoon Sarah, 1956[J]. Bull Amer Meteor Soc, 1958, 39: 633-639. [6] CHANG C P, LIU C H, KUO H C. Typhoon Vamei: An equatorial tropical cyclone formation[J]. Geophys Res Lett, 2003, 30(3): 1150. doi: 10. 1029/2002GL016365. [7] JOINT TYPHOON WARNING CENTER. Annual tropical cyclone report[R/OL]. Pearl Harbor: Naval Pacific Meteorology and Oceanography Center / Joint Typhoon Warning Center, 2001: 160. http: //www. usno. navy. mil/JTWC/annual-tropical-cyclone-reports. [8] DeMARIA M, PICKLE J D. A simplified system of equations for simulations of tropical cyclones[J]. J Atmos Sci, 1988, 45(10): 1542-1554. [9] TANGANG F T, JUNENG L, REASON C J. MM5 Simulated evolution and structure of typhoon Vamei (2001)[M]// CHEN Y-T. Advances in geosciences, solid earth, ocean science & atmospheric science. Singapore: World Scientific Publishing Company, 2006: 191-207. [10] JUNENG L, TANGANG F T, REASON C J C, et al. . Simulation of tropical cyclone Vamei (2001) using the PSU/NCAR MM5 model[J]. Meteorol Atmos Phys, 2007, 97: 273-290. [11] CHAMBERS C R S, LI T. Simulation of forma­tion of a near-equatorial typhoon Vamei (2001)[J]. Meteorol Atmos Phys, 2007, 98: 67-80. [12] LIU G R, LIU C C, HUANG C S, et al. Diagnosing the growth of equatorial typhoon Vamei (2001) from an energy standpoint[J]. Terr Atmos Ocean Sci, 2010, 21(5): 817-827. [13] CHEN FEI, DU YAN, YAN LI, et al. Response of upper ocean currents to typhoons at two ADCP moorings west of the Luzon Strait[J]. Chin J Oceanol Limnol, 2010, 28(5): 1002-1011. [14] CHEN YING-JUN, XIE QIANG, MENG WEI-GUANG, et al. A numerical study of the influence of sea surface temperatures with different temporal resolutions on Typhoon Dujuan over the South China Sea[J]. J Trop Meteorol, 2010, 16(2): 195-200. [15] 孙璐, 王东晓, 胡建宇, 等. 南海北部海洋对局地生成热带气旋的响应 [J]. 热带海洋学报, 2008, 2 7(4): 11-19. [16] 张志旭, 齐义泉, 施平, 等. 波致应力对台风天气下南海上层海流的影响分析 [J]. 热带海洋学报, 2007, 26(1): 1-8 [17] YU L, WELLER R A. Objectively analyzed air-sea heat fluxes for the global ice free oceans (1981-2005) [J ]. Bull Amer Meteor Soc, 2007, 88: 527-539. [18] FAIRALL C W, HARE J E, GRACHEV A A, et al. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm[J]. J Climate, 2003, 16: 571-591. [19] YU L, JIN X, WELLER R A. Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables[R]//OAFlux Project Technical Report. Woods Hole: Woods Hole Oceanographic Institution, 2008: 64. [20] LIN I I, LIU W T, WU C, et al. New evidence for enhanced ocean primary production triggered by tropical cyclone[J]. Geophys Res Lett, 2003, 30(13), 1781. doi: 10. 1029/2003GL017141. [21] SHANG S, LI L, SUN F, et al. Changes of temperature and bio-optical properties in the South China Sea in response to Typhoon Lingling, 2001[J]. Geophys Res Lett, 2008, 35: L10602, doi: 10. 1029/ 2008GL033502. [22] SAKAIDA F, KAWAMURA H, TOBA Y. Sea surface cooling caused by typhoons in the Tohoku area in August 1989 [J]. J Geophys Res, 1998, 103: 1053-1065. [23] LIN I I, LIU W T, WU C C, et al. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling[J]. Geophys Res Lett, 2003, 30 (3): 1131. doi: 10. 1029/2002GL015674 [24] SHI W, WANG M. Observations of a hurricane Katrina-induced phytoplankton bloom in the gulf of Mexico[J]. Geophys Res Lett, 2007, 34(2): L11607, doi: 10. 1029/2007GL029724.
Outlines

/