Marine Meteorology

Progress in objective position methods of tropical cyclone center using satellite remote sensing

  • Yang- He-Qun ,
  • Yang-Yin-Meng
Expand
  • 1. Shanghai Center for Satellite Remote Sensing and Measurement Application, Shanghai 201199, China 2. Shanghai Meteorological Center, Shanghai 200030, China

Received date: 2010-08-05

  Revised date: 2011-06-03

  Online published: 2012-06-05

Abstract

This paper summarizes the progress in objective position methods of tropical cyclone center based on satellite remote sensing from four new perspectives. They are cloud pattern recognition, wind field analysis, temperature/humidity structure inversion, and tempo-spatial movement matching. The four methods’ principles and realization processes are introduced, as well as their advantages, disadvantages and applicability. Finally, this paper concludes that although most of the above methods are still at exploratory research phase, their many features are better than the traditional positioning method of artificial visual interpretation, which will make them inevitable in locating tropical cyclone center. Comprehensive comparison also points out that one hybrid intelligent algorithm combined with motion characteristics will be the research and development tendency of tropical cyclone center location technology in future. Besides, it is necessary to establish an integrated tropical cyclone center positioning system that synthesizes various data and algorithms, which will be conducive to improve the stability and accuracy of tropical cyclone center positioning.

Cite this article

Yang- He-Qun , Yang-Yin-Meng . Progress in objective position methods of tropical cyclone center using satellite remote sensing[J]. Journal of Tropical Oceanography, 2012 , 31(2) : 15 -27 . DOI: 10.11978/j.issn.1009-5470.2012.02.003

References

陈联寿, 丁一汇. 西北太平洋台风概论[M]. 北京: 科学出版社, 1979: 206-226. 钮学新. 热带气旋动力学[M]. 北京: 气象出版社, 1992: 145-148. CHAURASIA S, KISHTAWAL C M, PAL P K. An objective method of cyclone centre determination from geostationary satellite observations[J]. International Journal of Remote Sensing, 2010, 31(9): 2429-2440. 江吉喜, 王永宽. 气象卫星资料在台风业务和研究中的应用[J]. 国土资源遥感, 1989, 2: 15-22. 许映龙, 矫梅燕, 毕宝贵, 等. 近海台风雷达定位方法应用研究[J]. 大气科学, 2006, 30(6): 1119-1128. DVORAK V F, Tropical cyclone intensity analysis and forecasting from Satellite imagery[J]. Monthly Weather Review, 1975, 103(5): 420-430. 冯民学, 于波, 陈必云, 等. 有眼台风的自动定位方法初探[J]. 气象, 1996, 23(12): 15-17. 江吉喜. 增强显示红外卫星云图在热带气旋分析中的应用[J]. 气象学报, 1986, 44(4): 482-487. 方翔, 咸迪, 李小龙, 等. QuikSCAT洋面风资料及其在热带气旋分析中的应用[J]. 气象, 2007, 33(3): 33-39. LEE R S T, LIU J N K. Tropical cyclone identification and tracking system using integrated neural oscillatory elastic graph matching and hybrid RBF network track mining techniques[J]. IEEE Transaction on Neural Network, 2000b, 11(3): 680-689. 张军, 刘正光, 吴冰, 等. 基于单幅红外云图的有眼台风自动定位算法[J]. 天津大学学报, 2005, 38(5): 437-442. 曾明剑, 于波, 周曾奎, 等. 卫星红外云图上台风中心定位技术研究和应用[J]. 热带气象学报, 2006, 22(3): 241-247. 刘正光, 邱海明, 吴冰, 等. 基于卫星云图的无眼台风中心定位算法[J]. 天津大学学报, 2003, 36(6): 668-672. 刘凯, 黄峰, 罗坚. 无眼台风自动定位方法研究[J]. 信息与控制, 2001, 30(6): 543-546. 王虹, 余建波, 陈明明, 等. 基于FY-2C气象卫星云图的台风分割方法的研究[J]. 计算机工程与应用, 2008, 44(20): 188-191. 张军, 张宏伟, 朱昕昭, 等. 基于数学形态学的有眼台风定位方法[J]. 应用基础与工程科学学报, 2006, 14: 240-246. 余建波. 基于气象卫星云图的云类识别及台风分割和中心定位研究[D]. 武汉: 武汉理工大学, 2008: 73-85. 刘凯, 黄峰, 寇正. 基于纹理和区域特征的台风卫星云图分割方法[J]. 计算机工程与应用, 2004, 40(33): 219-220. 鲁娟. 基于多通道卫星云图的台风中心定位方法研究[D]. 金华: 浙江师范大学, 2010: 38-48. 叶臻. 热带气旋卫星云图的计算机辅助定位研究[D]. 上海: 复旦大学, 1999: 1-60. 孔秀梅. 形成期台风螺旋云带的提取、描述及中心定位研究[D]. 天津: 天津大学, 2003: 32-53. 牛海军, 杨夙. 基于红外云图的台风中心自能定位方法[J]. 计算机工程, 2010, 36(9): 195-196. 王福宁. 基于卫星云图的台风云系分割和中心定位研究[D]. 昆明: 云南师范大学, 2006: 3-10. WONG K Y, Yip, C L. Identifying centers of circulating and spiraling vector field patterns and its applications[J]. Pattern Recognition, 2009, 42: 1371-1387. WIMMERS A J, VELDEN C. Objectively determination the rotational center of tropical cyclones in passive microwave satellite imagery[J]. Journal of Applied Meteorology and Climatology, 2010, 49: 2013-2034. JAISWAL N, KISHTAWAL C M. Automatic determination of center of tropical cyclone in satellite-generated IR images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 460-463. LEE R S T, LIU J N K. ATMOSPHERE – Automatic track mining and objective satellite pattern hunting system using enhanced RBF and EGDLM[C]// Proceedings of AAAI/IAAI. Austin, Texas, U.S.A, 2000: 603-608.  LEE R S T, LIU J N K. An automatic tropical cyclone pattern recognition and classification system using composite neural oscillatory-based EGDLM[J]. Journal of Fuzzy Systems, 2002, 4(1): 616-625. LEE R S T, LIU J N K. An elastic contour matching model for tropical cyclone pattern recognition[J]. IEEE Trans Systems, Man, and Cybernetics, 2001, 31 B(3): 413-417. YIP C L, WONG K Y. Efficient and effective tropical cyclone eye fix using genetic algorithms[C]//Proceedings of the 8th international conference on knowledge-based intelligent information and engineering systems (KES-2004), vol. 3213 of lecture notes in computer science. Wellington, New Zealand: Springer-Verlag, 2004: 654-660. WONG K., YIP C L, LI., P W. Automatic tropical cyclone eye fix using genetic algorithm[J]. Expert Systems with Applications, 2008, 34(1): 643-656. WONG K Y, YIP C L. Tropical cyclone eye fix using genetic algorithm with temporal information[C]// Proceedings of the 9th international conference on knowledge-based intelligent information and engineering systems (KES-2005), vol. 3681 of lectures notes in computer science. Melbourne, Australia: Springer-Verlag, 2005: 854-860. WONG K Y, YIP C L. An intelligent tropical cyclone eye fix system using motion field analysis[C]//17th IEEE international conference on tools with artificial intelligence (ICTAI-2005), Hong Kong, China: 2005: 652-656. WONG K Y, YIP C L, LI P W, et al. Automatic template matching method for tropical cyclone eye fix[C]// Proceedings of the 17th international conference on pattern recognition (ICPR-2004), Cambridge, UK: 2004, 3: 650-653. WEI K, JING Z L, LI Y X, et al. Spiral band model for locating tropical cyclone centers[J]. Pattern Recognition Letters, 2011, 32(6): 761-770. WEI K, JING Z L. Spiral band model optimization by chaos immune evolutionary algorithm for locating tropical cyclones[J]. Atmospheric Research, 2010, 97(1-2): 266-277. ASHIT T, HO S S, LIU T, et al. Global cyclone detection and tracking using multiple remote satellite data[C]//The eighth annual NASA Earth Science Technology Conference (ESTC2008). Maryland, U.S.A: 2008, http://esto.nasa.gov/ conferences/estc2008/papers/Talukder_Ashit_A1P1.pdf. 许磊. 支持向量机和模糊理论在遥感图像分类中的应用[D]. 无锡: 江南大学, 2006: 11-29. 骆剑承, 周成虎, 梁怡, 等. 支撑向量机及其遥感影像空间特征提取和分类的应用研究[J]. 遥感学报, 2002, 6(1): 50-55. 刘志刚. 支撑向量机在光谱遥感影像分类中的若干问题研究[D]. 武汉: 武汉大学, 2004:33-57. 邹巨洪, 林明森, 潘德炉, 等. QuikSCAT在台风监测中的应用[J]. 遥感学报, 2009, 13(5): 840-853. 吴晓京, 陈云浩, 郑新江, 等. 洋面风场的QuikScat/SeaWinds遥感探测[J]. 自然灾害学报, 2007, 16(2): 7-15. 许健民, 张其松. 卫星风推导和应用综述[J]. 应用气象报, 2006, 17(5): 574-582. 方翔, 许健民, 张其松. 高密度卫星风资料所揭示的发展和不发展热带气旋的对流层上部环流特征[J]. 热带气象学报, 2000, 16(3): 217-224. 王萍, 宋振龙, 孔秀梅, 等. 基于云导风场的形成期台风定位[J]. 模式识别与人工智能, 2005, 18(6): 752-757. 杜惠良, 滕卫平, 肖云. 利用红外云图作台风客观定位[J]. 热带气象学报, 1996, 12(3): 285-288. 范振原. 应用SSM/I卫星资料于台风中心定位及最大风速估算[D]. 桃园: 台湾国立中央大学, 2004 : 1-2. 王燕燕, 叶臻, 孙慰迟. 台风中心的旋转定位[J]. 中国图象图形学报, 2002, 7(A)(5): 491-494. 刘正光, 喻远飞, 吴冰, 刘还珠. 利用云导风矢量的台风中心自动定位[J]. 气象学报, 2003, 61(5): 636-640. 王丽军. 基于嵌入式隐马尔可夫模型与交叉熵的台风中心定位[D]. 天津: 天津大学硕士, 2006: 29-56. 雷小途, 陈联寿. 西北太平洋热带气旋活动的维度分布特征[J]. 应用气象学报, 2002, 13(2): 218-227. 鲁小琴, 雷小途. 用地理信息系统改进热带气旋的客观定位精度[J]. 应用气象学报, 2005, 16(6): 841-847. 鲁小琴, 殷岳, 梁旭东, 等. TC-IDV——热带气旋预报和研究的新工具[J]. 大气科学研究与应用, 2009, 1: 1-9. WANG D X, ZHOU W, YU X-L, et al. Marine atmospheric boundary layers associated with summer monsoon onset over the South China Sea in 1998[J]. Atmospheric and Oceanic Science Letter, 2010, 3(5): 263–270. 郑静, 费建芳, 蒋国荣, 等. 海气相互作用对热带气旋发生发展影响研究综述[J]. 海洋预报, 2008, 25(1): 56-64. 郑卫江, 吴焕萍, 罗兵, 等. GIS技术在台风预报服务产品制作系统中的应用[J]. 应用气象学报, 2010, 21(2): 250-25.
Outlines

/