Review

On relationship between physical process and geological process in South China Sea Deep

  • SONG Hai-Bin
Expand
  • Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Received date: 2011-02-08

  Revised date: 2012-03-12

  Online published: 2012-09-11

Abstract

Special sedimentary phenomena such as sediment waves in the northeastern South China Sea (SCS) are closely related with physical processes in deep sea. Marine geological studies infer that sediment waves are caused by upward flow, contour current and turbidite current, while westward propagation of nonlinear internal waves and westward movement of meso-scale eddies are main features observed by satellite in the region. The evolutions of eddies and internal tides/internal waves are controlled by seafloor relief, and key features are submarine ridges (Hengchun Ridge and Luzon submarine volcanic arc) and continental shelf edge, which are mainly controlled by tectonic processes. The setup and evolution of modern physical process in SCS Deep are related to the formation and development of deep sea basin, northern rifted margin and eastern subduction margin of the SCS. Comprehensive studies of interactions among tectonic, sedimentary and physical processes will ensure a better understanding of evolution of SCS Deep. Recently, seismic oceanography has developed fast, though still in its preliminary stage. New discoveries may change our traditional knowledge about the deep ocean, grasp the nature of interactions between fluid Earth and solid Earth, and make major contributions to Earth system sciences.

Cite this article

SONG Hai-Bin . On relationship between physical process and geological process in South China Sea Deep[J]. Journal of Tropical Oceanography, 2012 , 31(3) : 10 -20 . DOI: 10.11978/j.issn.1009-5470.2012.03.002

References

[1] 汪品先. 南海——我国深海研究的突破口[J]. 热带海洋学报, 2009, 28(3): 1–4.

[2] WANG P, PRELL W L, BLUM P. Proc ODP, Init Repts [R/CD]. USA: Ocean Drilling Program. College Station: Texas A & M Univ, 2000, 184: 1–77.

[3] 邵磊, 李学杰, 耿建华, 等. 南海北部深水底流沉积作用[J]. 中国科学: D 辑, 2007: 37.

[4] 钟广法, 李前裕, 郝沪军, 等. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9): 907–913.

[5] 宋海斌, 耿建华, WONG H K, 等. 南海北部东沙海域天然气水合物的初步研究[J]. 地球物理学报, 2001, 44(5): 687–695.

[6] 丁巍伟, 李家彪, 韩喜球, 等. 南海东北部海底沉积物波的形态、粒度特征及物源、成因分析[J]. 海洋学报, 2010, 32(2): 1–10.

[7] L?DMANN T, WONG H K, BERGLAR K. Upward flow of North Pacific deep water in the northern South China Sea as deduced from the occurrence of drift sediments [J]. Geophysical Research Letters, 2005, 32: L05614. doi: 10. 1029/2004GL021967.

[8] STOMMEL H. The abyssal circulation [J]. Deep-Sea Research, 1958, 5(1): 80–82.

[9] 苏纪兰. 中国近海水文[M]. 北京: 海洋出版社, 2004: 1–367.

[10] HSU M K, LIU A K. Nonlinear internal waves in the South China Sea [J]. Can J Remote Sens, 2000, 26(2): 72–81.

[11] ORR M H, MIGNEREY P C. Nonlinear internal waves in the South China Sea: Observation of the conversion of depression internal waves to elevation internal waves [J]. J Geophys Res, 2003, 108(C3): 3064. doi: 10.1029/2001JC 001163.

[12] ZHAO ZHONGXIANG, KLEMAS V, ZHENG QUANAN, et al. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea [J]. Geophys Res Lett, 2004, 31: L06302. doi: 10.1029/ 2003GL019077.

[13] RAMP S R, TANG T Y, DUDA T F, et al. Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation [J]. IEEE J Oceanic Eng, 2004, 29: 1157–1181. doi: 10.1109/JOE.2004.840839.

[14] DUDA T F, LYNCH J F, IRISH J D, et al. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea [J]. IEEE J. Oceanic Eng, 2004, 29 (4): 1105–1130.

[15] LIEN R C, TANG T Y, CHANG M H, et al. Energy of nonlinear internal waves in the South China Sea [J]. Geophys Res Lett, 2005, 32: L05615. doi: 10.1029/2004GL022012.

[16] ZHAO Z, ALFORD M H. Source and propagation of internal solitary waves in the northern South China Sea [J]. J Geophys Res, 111, 2006: C11012. doi: 10.1029/ 2006JC003644.

[17] KLYMAK J M, PINKEL R, LIU C T, et al. Prototypical solitons in the South China Sea [J]. Geophys Res Lett, 2006, 33: L11607. doi: 10.1029/2006GL025932.

[18] ZHENG QUANAN, SUSANTO R D, HO C R, et al. Statistical and dynamical analysis of generation mechanisms of solitary internal waves in the northern South China Sea [J]. J Geophys Res, 2007, 112: C03021. doi: 10.1029/2006 JC003551.

[19] LI XIAOFENG, ZHAO ZHONGXIANG, PICHEL W G. Internal solitary waves in the northwestern South China Sea inferred from satellite images [J]. Geophys Res Lett, 2008, 35: L13605. doi: 10.1029/2008GL034272.

[20] 蔡树群, 甘子钧, 龙小敏. 南海北部孤立子内波的一些特征和演变[J]. 科学通报, 2001, 46(15): 1245–1250.

[21] FARMER D, LI QIANG, PARK J H. Internal wave observations in the South China Sea: The role of rotation and non-linearity [J]. Atmos Ocean, 2009, 47(4): 267–280.

[22] BUIJSMAN M C, KANARSKA Y, McWilliams J C. On the generation and evolution of nonlinear internal waves in the South China Sea [J]. J Geophys Res, 2010: C02012. doi: 10. 1029/2009JC005275.

[23] GAO ZHENZHONG, ERIKSSON K A. Internal tide deposits in an Ordovician submarine channel: Previously unrecognized facies? [J]. Geology, 1991, 19: 734–737.

[24] 高振中, 何幼斌, 罗顺社, 等. 深水牵引流沉积——内潮汐、内波和等深流沉积研究[M]. 北京: 科学出版社, 1996: 1–22.

[25] 高振中, 何幼斌, 刘成鑫, 等. 深水牵引流沉积的研究历程、现状与前景[J]. 古地理学报, 2006, 8(3): 332–338.

[26] 张兴阳. 深水牵引流形成的床形单元组合[J]. 古地理学报, 2000, 2(2): 28–36.

[27] WANG GUIHUA, SU JILAN, CHU P C. Mesoscale eddies in the South China Sea observed with altimeter data [J]. Geophys Res Lett, 2003, 30(21): 2121. doi: 10.1029/2003 GL018532.

[28] BROECKER W S. The biggest chill [J]. Nat Hist Mag, 1987, 97: 74-82.

[29] BROECKER W S. The great ocean conveyor [J]. Oceanography, 1991, 4: 79–89.

[30] LOZIER M S. Deconstructing the Conveyor Belt [J]. Science, 2010, 328: 1507–1511. doi: 10.1126/science.1189250

[31] GARRETT C. Internal tides and ocean mixing [J]. Science, 2003, 301: 1858–1859.

[32] RICHARDSON P L, BOWER A S, ZENK W. A census of Meddies tracked by ?oats [J]. Prog Oceanogr 2000, 45(2): 209–250.

[33] ARMI L, HEBERT D, OAKEY N, et al. The history and decay of a Mediterranean salt lens [J]. Nature, 1988, 333: 649–651.

[34] ARMI L, HEBERT D, OAKEY N, et al. Two years in the life of a Mediterranean salt lens [J]. Journal of Physical Oceanography, 1989, 19: 354–370.

[35] 李家彪. 中国边缘海形成演化与资源效应[M]. 北京: 海洋出版社, 2008: 1–509.

[36] HALL R. Cenozoic reconstructions of SE Asia and the SW Pacific: changing patterns of land and sea [M]//METCALFE I, SMITH J M B, MORWOOD M, et al. Faunal and Floral Migrations and Evolutions in SE Asia-Australasia. Lisse: A A. Balkema: Swets & Zeitlinger Publishers, 2001: 35–56.

[37] 陈林, 宋海斌, 许鹤华, 等. 张裂大陆边缘形成演化的动力学模拟[J]. 地球物理学报, 2009, 52(11): 2781–2787. doi: 10.3969/j. issn.0001-5733.2009.11.012

[38] 宋海斌. 南海基底构造格架及张裂大陆边缘的综合地球物理研究[R]. 北京: 中国科学院地球物理研究所博士后报告, 1998: 1–141.

[39] 陈林. 南海张裂大陆边缘数值模拟研究[D]. 北京: 中国科学院地质与地球物理研究所博士论文, 2009: 1–165.

[40] HOLBROOK W S, P?RAMO P, PEARSE S, et al. Thermohaline fine structure in an oceanographic front from seismic reflection profiling [J]. Science, 2003, 301: 821–824.

[41] RUDDICK B. Sounding out ocean fine structure [J]. Science, 2003, 301: 772–773.

[42] RUDDICK B, SONG HAIBIN, DONG CHONGZHI, et al. Water column seismic images as maps of temperature gradient [J]. Oceanography, 2009, 22(1): 192–205.

[43] 宋海斌, 董崇志, 陈林, 等. 用反射地震方法研究物理海洋?地震海洋学简介[J]. 地球物理学进展, 2008, 23(4): 1156–1164.

[44] 董崇志, 宋海斌, 拜阳, 等. 地震海洋学研究进展[J]. 地球物理学进展, 2010, 25(1): 109–123. doi: 10.3969/j.issn. 1004-2903.2010.01.017

[45] NAKAMURA Y, NOGUCHI T, TSUJI T, et al. Simultaneous seismic reflection and physical oceanographic observations of oceanic fine structure in the Kuroshio extension front [J]. Geophys Res Lett, 2006, 33?: L23605. doi: 10.1029/2006GL 027437

[46] 宋海斌, PINHEIRO L M, 王东晓, 等. 海洋中尺度涡与内波的地震图像[J]. 地球物理学报, 2009, 52(11): 2775- 2780.

[47] PINHEIRO L M, SONG HAIBIN, RUDDICK B, et al. Detailed 2-D imaging of the Mediterranean outflow and meddies off W Iberia from multichannel seismic data [J]. Journal of Marine Systems, 2010, 79: 89–100.

[48] HOLBROOK W S, FER I. Ocean internal wave spectra inferred from seismic reflection transects [J]. Geophys Res Lett, 2005, 32: L15604. doi: 10. 1029/2005GL023733.

[49] KRAHMANN G, BRANDT P, KLAESCHEN D, et al. Mid-depth internal wave energy off the Iberian Peninsula estimated from seismic reflection data [J]. Journal of Geophysical Research, 2008, 113, C12016. doi: 10. 1029/ 2007JC004678.

[50] SONG H B, DONG C Z, RUDDICK B, et al. Researches on internal wave spectra of northeastern South China Sea from one reflection seismic profile: Seismic Oceanography - ESF Expl. Workshop, Conf Proc [C]. Barcelona: Seismic Oceanography Conf. proc, 2008.

[51] 董崇志, 宋海斌, 郝天珧, 等. 南海东北部海洋内波的反射地震研究[J]. 地球物理学报, 2009, 52(8): 2050–2055.

[52] 宋海斌, 拜阳, 董崇志, 等. 南海东北部内波特征——经验模态分解方法应用初探[J]. 地球物理学报, 2010, 53(2): 393–400.

[53] WOOD W T, HOLBROOK W S, SEN M K, et al. Full waveform inversion of reflection seismic data for ocean temperature profiles [J]. Geophys Res Lett, 2008, 35: L04608. doi: 10. 1029/2007GL032359.

[54] PAPENBERG C, KLAESCHEN D, KRAHMANN G, et al. Ocean temperature and salinity inverted from combined hydrographic and seismic data [J]. Geophys Res Lett, 2010, 37: L04601. doi: 10. 1029/2009GL042115.

[55] 董崇志. 海水温盐结构反演与南海内波的地震海洋学研究[D]. 北京: 中国科学院地质与地球物理研究所博士论文, 2010: 1–128.

[56] 宋洋, 宋海斌, 陈林, 等. 利用地震数据反演海水温盐结构 [J]. 地球物理学报, 2010, 53(11): 2696–2702. doi: 10. 3969/ j. issn. 001-5733. 2010. 11. 017.

[57] SHEEN K L, WHITE N J, HOBBS R W. Estimating mixing rates from seismic images of oceanic structure [J]. Geophys Res Lett, 2009, 36: L00D04. doi: 10. 1029/2009GL040106.

[58] KLAESCHEN D, HOBBS R W, KRAHMANN G, et al. Estimating movement of reflectors in the water column using seismic oceanography [J]. Geophys Res Lett, 2009, 36: L00D03. doi: 10. 1029/2009GL038973.

[59] SONG HAIBIN, PINHEIRO L M, TONG C H. Seismic imaging of submarine springs (OS21B-04): AGU Western Pacific Meeting, Taiwan, June, 2010 [C]. Taipei: AGU, 2010.

[60] VSEMIRNOVA E A, HOBBS R W, HOSEGOOD P. Mapping turbidity layers using seismic oceanography methods [J]. Ocean Sci, 2012, 8: 11–18.

[61] SONG HAIBIN, PINHEIRO L M, RUDDICK B, et al. Seismic Oceanography: a new geophysical tool to investigate the thermohaline structure of the oceans [C]//MARCELLI M. Oceanography. Croatia: InTech Press, 2012: 113–128.

[62] SONG HAIBIN, PINHEIRO L M, RUDDICK B, et al. Meddy, spiral arms, and mixing mechanisms viewed by seismic imaging in the Tagus Abyssal Plain (SW Iberia) [J]. Journal of Marine Research, 2011, 69(4-6): 827–842.

[63] SONG HAIBIN, BAI YANG, PINHEIRO L, et al. Analysis of ocean internal waves imaged by multichannel reflection seismics, using Ensemble Empirical Mode Decomposition [J]. Journal of Geophysics and Engineering, 2012, 9(3): 302–311.
Outlines

/