Marine geomorphology

Petrology and geochemistry of peridotite dredged from inner slope of Southern Mariana Trench: implication for mantle fluid metasomatism in the forearc setting

  • DONG Pan-Hui ,
  • CHU Feng-You ,
  • SHU Ji-Gao ,
  • TU Xing
Expand
  • Key Laboratory of Submarine Geosciences, State Oceanic Administrtion, The Second Institute of Oceanography, State Oceanic Administrtion, Hangzhou 310012, China

Received date: 2010-12-20

  Revised date: 2011-05-11

  Online published: 2012-09-11

Abstract

The peridotites beneath arc outcrop at the inner slop of the Mariana Trench because of subduction erosion, which provides us a window to see the geological process in mantle wedge. In this paper, mineral composition, major elements, and trace element data of the peridotites dragged from southern Mariana Trench inner slope are reported to discuss petrogeness and fluid/rock interaction. High Mg of olivine, extremely low Al2O3 of orthopyroxene, and high Cr of spinel indicate the peridotites are refractory. Hydrous minerals in the peridotites such as Talc, amphibole (mainly tremolite with a little magnesiohornblende and edenite) and serpentine indicate fluid that might be rich in SiO2, Na2O and Al2O3 interacting with the refractory peridotites in mantle wedge. Whole rocks contain low concentration of CaO and Al2O3 and high MgO (~43% calculate to anhydrous system) coincidence with refractory nature revealed by mineral composition. The relative enrichment of U and Sr might reflect the chemical characteristics of the fluid released from the subducting slab at shallow depth.

Cite this article

DONG Pan-Hui , CHU Feng-You , SHU Ji-Gao , TU Xing . Petrology and geochemistry of peridotite dredged from inner slope of Southern Mariana Trench: implication for mantle fluid metasomatism in the forearc setting[J]. Journal of Tropical Oceanography, 2012 , 31(3) : 120 -127 . DOI: 10.11978/j.issn.1009-5470.2012.03.016

References

[1] HYNDMAN R D, PEACOCK S M. Serpentinization of the forearc mantle[J]. Earth Planet Sci Lett, 2003, 212(3-4): 417-432.

[2] PEACOCK S A. Fluid Processes in Subduction Zones[J]. Science, 1990, 248(4953): 329-337.

[3] FRYER P, AMBOS E L, HUSSONG D M. Origin and emplacement of Mariana forearc seamounts[J]. Geology, 1985, 13(11): 774-777.

[4] MOTTL M J, WHEAT C G, FRYER P, et al. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate[J]. Geochim Cosmochim Acta, 2004, 68(23): 4915-4933.

[5] HULME S M, WHEAT C G, FRYER P, et al. Pore water chemistry of the Mariana serpentinite mud volcanoes: A window to the seismogenic zone[J]. Geochem Geophy Geosy, 2010, 11(1): Q01X09.

[6] BICKFORD M E, SIEGEl D I, MOTTL M J, et al. Strontium isotopic relations among pore fluids, serpentine matrix, and harzburgite clasts, South Chamorro Seamount, Mariana forearc[J]. Chem Geol, 2008, 256(1-2): 24-32.

[7] DESCHAMPS F, GUILLOT S, GODARD M, et al. In situ characterization of serpentinites from forearc mantle wedges: Timing of serpentinization and behavior of fluid-mobile elements in subduction zones[J]. Chem Geol, 2010, 269(3-4): 262-277.

[8] OHARA Y, ISHII T. Peridotites from the southern Mariana forearc: Heterogeneous fluid supply in mantle wedge[J]. Isl Arc, 1998, 7(3): 541-558.

[9] 陈俊兵, 曾志刚. 马里亚纳南部前弧橄榄岩的岩石及矿物学: 对弧下地幔楔交代作用的指示[J]. 海洋地质与第四纪地质, 2007, 27(1): 53-59.

[10] 陈俊兵, 曾志刚. 马里亚纳岛弧南部前弧方辉橄榄岩的交代作用: 单斜辉石和角闪石的微量元素特征[J]. 中国科学: D辑 地球科学, 2007, 37(6): 720-727.

[11] STERN R J, BLOOMER S H. Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs[J]. Geol Soc Am Bull, 1992, 104(12): 1621-1638.

[12] MURATA K, MAEKAWA H, YOKOSE H, et al. Significance of serpentinization of wedge mantle peridotites beneath Mariana forearc, western Pacific[J]. Geosphere, 2009, 5(2): 90-104.

[13] BLOOMER S H. Distribution and Origin of Igneous Rocks from the landward slopes of the Mariana trench: implicaitons for its structure and evolution[J]. J Geophys Res, 1983, 88(B9): 7411-7428.

[14] NIU YAOLING, Langmuir C H, Kinzler R J. The origin of abyssal peridotites: a new perspective[J]. Earth Planet Sci Lett, 1997, 152(1-4): 251-265.

[15] 刘颖, 刘海臣. 用ICP―MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996, 25(6): 552-558.

[16] SUN SHENSU, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[17] WORKMAN R K, HART S R. Major and trace element composition of the depleted MORB mantle (DMM)[J]. Earth Planet Sci Lett, 2005. 231(1-2): 53-72.

[18] WANG XIAOMEI, ZENG ZHIGANG, LIU CHANGHUA, et al. Trace element composition of peridotites from the southern Mariana forearc:Insights into the geochemical effects of serpentinization and/or seafloor weathering[J]. Chin J Oceanol Limnol, 2009, 27(4): 985-992.

[19] HORNE R A. Marine chemistry: the structure of water and the chemistry of the hydrosphere[M]. New York: Wiley-Interscience, 1969: 151-155.

[20] PAULICK H, BACH W, GODARD M, et al. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20'N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments[J]. Chem Geol, 2006, 234(3-4): 179-210.

[21] PARKINSON I J, PEARCE J A. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): Evidence for mantle malting and melt-mantle interaction in a supra-subduction zone setting[J]. J Petrol, 1998, 39(9): 1577-1618.
Outlines

/