Marine Geology

Rare earth elements of seep carbonates and using them to trace redox variation at seep sites

  • BIAN You-yan ,
  • LIN Zhi-jia ,
  • FENG Dong ,
  • CHEN Duo-fu
Expand
  • 1. Key Laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 2. Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2011-03-10

  Revised date: 2011-04-19

  Online published: 2013-02-06

Abstract

At marine seeps, methane is microbially oxidized resulting in the precipitation of carbonate close to the seafloor. Methane oxidation leads to sulfate depletion in sediment pore water and induces change in redox conditions. Rare earth element (REE) patterns of authigenic carbonate phases from limestone collected from modern seeps of the Gulf of Mexico and the Congo Fan, as well as from two ancient hydrocarbon-seep localities, Hollard Mound (Middle Devonian) and Marmorito (Miocene), were investigated. The total REE content (?REE) of seep carbonates varies widely from 0.3×10-6 to 43.7×10-6, with a common trend that the ?REE in microcrystalline phases is higher than that in sparite cement. The shale-normalized REE patterns of seep carbonates often show different Ce anomalies, even in the samples from the same site. These varied Ce anomalies suggested that the redox conditions of seep carbonates are variable and complex. Overall, our results show that oxic conditions are at least temporarily common in seep environment. The varied redox conditions might be related to the changes of flux of seep fluid or the denitrification associated with methane oxidation that produces oxygen.

Cite this article

BIAN You-yan , LIN Zhi-jia , FENG Dong , CHEN Duo-fu . Rare earth elements of seep carbonates and using them to trace redox variation at seep sites[J]. Journal of Tropical Oceanography, 2012 , 31(5) : 37 -44 . DOI: 10.11978/j.issn.1009-5470.2012.05.006

References

[1] CAMPBELL K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 232: 362?407.
[2] HINRICHS K U, HAYES J M, SYLVA S P, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999, 398: 802-805.
[3] BOETIUS A, RAVENSCHLAG K, SCHUBERT C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407: 623?626.
[4] PECKMANN J, THIEL V. Carbon cycling at ancient methane-seeps[J]. Chem Geol, 2004, 205(3-4): 443-467.
[5] VALENTINE D L, REEBURGH W S. New perspectives on anaerobic methane oxidation[J]. Environ Microbiol, 2000, 2(5): 477-484.
[6] LIN S, HSIEH W, LIM Y C, et al. Methane migration and its influence on sulfate reduction in the Good Weather Ridge region, South China Sea continental margin sediments[J]. Terr Atmos Ocean Sci, 2006, 17(4): 883-902.
[7] LINKE P, SUESS E, TORRES M, et al. In situ measurement of fluid flow from cold seeps at active continental margins[J]. Deep Sea Res, Part I, Oceanogr Res Pap, 1994, 41(4): 721-739.
[8] TRYON M D, BROWN K M, TORRES M E, et al. Measurements of transience and downward fluid flow near episodic methane gas vents, Hydrate Ridge, Cascadia[J]. Geology, 1999, 27(12) : 1075-1078.
[9] WASHBURN L, JOHNSON C, GOTSCHALK C C, et al. A gas-capture buoy for measuring bubbling gas flux in oceans and lakes[J]. J Atmos Ocean Technol, 2001, 18(8): 1411-1420.
[10] TRYON M, BROWN K, DORMAN L R, et al. A new benthic aqueous flux meter for very low to moderate discharge rates[J]. Deep-Sea Res- Part I-Oceanogr Res Pap, 2001, 48(9): 2121-2146.
[11] TRYON M D, BROWN K M, TORRES M E. Fluid and chemical fluxes in and out of sediments hosting hydrate deposits on Hydrate Ridge, OR, II: Hydrological processes[J]. Earth Planet Sci Lett, 2002, 201(3-4): 541-557.
[12] CARSON B, KASTNER M, BARTLETT D, et al. Implications of carbon flux from the Cascadia accretionary prism: results from long-term, in situ measurements at ODP Site 892B[J]. Mar Geol, 2003, 198(1-2): 159-180.
[13] LEIFER I, BOLES J, CLARK J F, et al. The dynamic nature of marine hydrocarbon seepage[J]. Environ Geol, 2004, 46(8): 1038-1052.
[14] TRYON M D, BROWN K M. Fluid and chemical cycling at Bush Hill; implications for gas- and hydrate-rich environments[J]. Geochem Geophys Geosyst, 2004, 5(12): 1-7.
[15] MACDONALD I R, BENDER L C, VARDARO M , et al. Thermal and visual time-series at a seafloor gas hydrate deposit on the Gulf of Mexico slope[J]. Earth Planet Sci Lett, 2005, 233(1-2): 45-59.
[16] LEIFER I, BOLES J. Measurement of marine hydrocarbon seep flow through fractured rock and unconsolidated sediment[J]. Mar Pet Geol, 2005, 22(4): 551-568.
[17] BROWN K M, TRYON M D, DESHON H R, et al. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone[J]. Earth Planet Sci Lett, 2005, 238(1-2): 189-203.
[18] YANG T F, CHUANG P, SAULWOOD L, et al. Methane venting in gas hydrate potential area offshore of SW Taiwan: Evidence of gas analysis of water column samples[J]. Terr Atmos Ocean Sci, 2006, 17(4): 933-950.
[19] VARDARO M, MACDONALD I, BENDER L, et al. Dynamic processes observed at a gas hydrate outcropping on the continental slope of the Gulf of Mexico[J]. Geo-Mar Lett, 2006, 26(1): 6-15.
[20] OUNG J, LEE C, LEE C, et al. Geochemical study on hydrocarbon gases in seafloor sediments, southwestern offshore Taiwan-Implications in the potential occurrence of gas hydrates[J]. Terr Atmos Ocean Sci, 2006, 17(4): 921-931.
[21] CHUANG P, YANG T F, LIN S, et al. Extremely high methane concentration in bottom water and cored sediments from offshore southwestern Taiwan[J]. Terr Atmos Ocean Sci, 2006, 17(4): 903-920.
[22] CHAO H, YOU C. Distribution of B, Cl and their isotopes in pore waters separated from gas hydrate potential areas, offshore southwestern Taiwan[J]. Terr Atmos Ocean Sci, 2006, 17(4): 961-979.
[23] CHEN C A, TSENG H. Abnormally high CH4 concentrations in seawater at mid-depths on the continental slopes of the northern south China Sea[J]. Terr Atmos Ocean Sci, 2006, 17(4): 951-959.
[24] DE B H, GERMAN C R, ELDERFIELD H, et al. Rare earth element distributions in anoxic waters of the Cariaco Trench[J]. Geochim Cosmochim Acta, 1988, 52(5): 1203-1219.
[25] GERMAN C R, ELDERFIELD H. Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin[J]. Geochim Cosmochim Acta, 1989, 53(10): 2561-2571.
[26] BARRAT J A, BOULEGUE J, TIERCELIN J J, et al. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa[J]. Geochim Cosmochim Acta, 2000, 64: 287?298.
[27] SHIELDS G, STILLE P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites[J]. Chem Geol, 2001, 17: 29?48.
[28] CHEN D F, DONG W Q, LI Q, et al. Possible REE constraints on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna[J]. Chem Geol, 2003, 201: 103?118.
[29] CHEN D F, HUANG Y Y, YUAN X L, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea[J]. Mar Pet Geol, 2005, 22: 613-621.
[30] 冯东, 陈多福. 黑海西北部冷泉碳酸盐岩的沉积岩石学特征及氧化还原条件的稀土元素地球化学示踪[J]. 现代地质, 2008, 22: 390-396.
[31] GE L, JIANG S Y, SWENNEN R, et al. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry[J]. Mar Geol, 2010, 277: 21-30.
[32] HIMMLER T, BACH W, BOHRMANN G, et al. Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis[J]. Chem Geol, 2010, 277: 126-136.
[33] SCHERER M, SEITZ H. Rare-earth element distribution in Holocene and Pleistocene corals and their redistribution during diagenesis[J]. Chem Geol, 1980, 28: 279-289.
[34] SHAW H F, WASSERBURG G J. Sm-Nd in marine carbonates and phosphates - Implications for Nd isotopes in seawater and crustal ages[J]. Geochim Cosmochim Acta, 1985, 49: 503-518.
[35] WEBB G E, KAMBER B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochim Cosmochim Acta, 2000, 64: 1557?1565.
[36] SHIELDS G, WEBB G. Has the REE composition of seawater changed over geological time[J]. Chem Geol, 2004, 204: 103-107.
[37] FENG D, CHEN D F, ROBERTS H H. Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico[J]. Mar Pet Geol, 2009, 26: 1190-1198.
[38] SAHLING H, BOHRMANN G, SPIESS V, et al. Pockmarks in the Northern Congo Fan area, SW Africa: Complex seafloor features shaped by fluid flow[J]. Mar Geol, 2008, 249(3-4): 206-225.
[39] FENG D, CHEN D F, PECKMANN J, et al. Authigenic carbonates from methane seeps of the northern Congo Fan: Microbial formation mechanism[J]. Mar Pet Geol, 2010, 27: 748-756.
[40] PECKMANN J, THIEL V, MICHAELIS W, et al. Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced authigenic carbonates[J]. Int J Earth Sci, 1999, 88: 60?75.
[41] PECKMANN J, WALLISER O H, RIEGEL W, et al. Signatures of hydrocarbon venting in a Middle Devonian carbonate mound (Hollard Mound) at the Hamar Laghdad (Antiatlas, Morocco) [J]. Facies, 1999, 40: 281?296.
[42] PECKMANN J, LITTLE C T S, GILL F, et al. Worm tube fossils from the Hollard Mound hydrocarbon-seep deposit, Middle Devonian, Morocco: Palaeozoic seep-related vestimentiferans[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 227: 242-257.
[43] MCLENNAN S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[M] // LIPIN B R, MCKAY G A. Geochemistry and Mineralogy of Rare Earth Elements. Min Soc Amer, 1989: 169?200.
[44] MCARTHUR J M, WALSH J N. Rare-earth geochemistry of phosphorites[J]. Chem Geol, 1984, 47: 91?220.
[45] WRIGHT J, SCHRADER H, HOLSER W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochim Cosmochim Acta, 1987, 51: 631-644.
[46] SHOLKOVITZ E, SHEN G T. The incorporation of rare-earth elements in modern coral[J]. Geochim Cosmochim Acta, 1995, 59: 2749-2756.
[47] SPIEβ V. Gashydrate Research Southwest African Continental Margin[EB/OL]. (2008) [2011-03-10]. http:// www.dfg-ozean.de/fileadmin/DFG/Berichte/M56_komplett.pdfB.pdf.
[48] GRAF G. Winter inversion of biomass and activity profile in a marine sediment[J]. Mar Ecol-Prog Ser, 1986, 33: 231-235.
[49] 宋金明, 李延, 朱仲斌. Eh和海洋沉积物氧化还原环境的关系[J]. 海洋通报, 1990, 9(4): 33-39.
[50] ELVERT M, SUSEE E, WHITICAT M J. Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids[J]. Naturwissenschaften, 1999, 86: 295-300.
[51] PANCOST R D, SINNINGHE DAMSTE J S. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings[J]. Chem Geol, 2003, 195 (1): 29-58.
[52] BIRGEL D, PECKMANN J. Aerobic methanotrophy at ancient marine methane seeps: A synthesis[J]. Org Geochem, 2008, 39(12): 1659-1667.
[53] ETTWING K F, BUTLER M K, PASLIER D L, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464: 543-548.
[54] 王风平. 深海冷泉区甲烷循环与氮循环关系的探讨[C]// 第一届深海研究与地球科学系统学术研讨会摘要集. 上海: 第一届深海研究与地球科学系统学术研讨会, 2010: 77.
Outlines

/