Marine Geology

Effect of nonhydrocarbon gas on thickness of hydrate stability zone under deep water in Qiongdongnan Basin

  • HE Yong ,
  • SU Zheng ,
  • WU Neng-you
Expand
  • 1. Key Laboratory of Renewable Energy and Gas Hydrate,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China; 3. GuangZhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2011-07-28

  Revised date: 2011-11-07

  Online published: 2013-02-06

Abstract

Natural gas hydrate is a hot spot of study at present, which may play a very important role in energy, environment and disasters. According to actual geological conditions in the Qiongdongnan Basin, the influence of nonhydrocarbon gas to the thickness of hydrate stability zone (HSZ) is numerically studied for component gases at various depths, combined with the salinity of ocean waters and geothermal gradient in the deep-water area within the basin. The results show that the thickness of HSZ in the Qiongdongnan Basin increases with water depth, and that CO2 in mixed gas of CH4+ CO2 alters the hydrate stability. The effect of CO2 is not only related to CO2 content but also to water depth. The thickness of HSZ increases at a shallow depth and then falls as CO2 content increases for water depth less than or equal to 1.3 km. When water depth is more than or equal to 1.55 km, input of CO2 decreases the HSZ thickness, and the influence enhances as the CO2 content grows. The results also indicate that N2 in mixed gas of CH4+N2 decreases the thickness of the HSZ. A 1% increase of N2 in the mixture can lead to 4m reduction in the thickness of the HSZ.

Cite this article

HE Yong , SU Zheng , WU Neng-you . Effect of nonhydrocarbon gas on thickness of hydrate stability zone under deep water in Qiongdongnan Basin[J]. Journal of Tropical Oceanography, 2012 , 31(5) : 62 -69 . DOI: 10.11978/j.issn.1009-5470.2012.05.009

References

[1] SLOAN E D, KOH C A. Clathrate hydrates of natural gases (Third edition)[M]. Florida: CRC Press, 2008: 1?28.
[2] 王秀娟. 南海北部陆坡天然气水合物储层特征研究[D]. 青岛: 中国科学院海洋研究所, 2006: 1?21.
[3] KVENVOLDEN K A. Methane hydrate in the global organic carbon cycle[J]. Terra Nova, 2002, 14(5): 302?306.
[4] KVENVOLDEN K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173?187.
[5] 甘华阳, 王家生. 天然气水合物潜在的灾害和环境效应[J]. 地质灾害与环境保护, 2004, 15(4): 5?8.
[6] 王淑红, 宋海斌, 颜文. 天然气水合物的环境效应[J]. 矿物岩石地球化学通报, 2004, 23(2): 160?165.
[7] COLLETT T S. Natural-gas hydrates: Resource of the twenty-first century?[M]. Tulsa: AAPG, 2002: 74, 85?108.
[8] COLLETT T S. Natural-gas hydrates of the Prudhoe Bay and Kuparuk river area, north slope, Alaska [J]. AAPG Bulletin-American Association of Petroleum Geologists, 1993, 77(5): 793?812.
[9] SLOAN E D, KOH C A, SUM A K. Gas hydrate stability and sampling: The future as related to the phase diagram[J]. Energies, 2010, 3(12): 1991?2000.
[10] TREHU A M, RUPPEL C, HOLLAND M, et al. Gas hydrates in marine sediments: Lessons from scientific ocean drilling [J]. Oceanography, 2006, 19(4): 124?142.
[11] 陈祖安, 白武明, 徐文跃. 多组分天然气水合物在海底沉积层中稳定区及存在区的预测[J]. 地球物理学报, 2005, 04: 870?875.
[12] 雷超, 任建业, 裴健翔, 等. 琼东南盆地深水区构造格局和幕式演化过程[J]. 地球科学, 2011, 36(1): 151?162.
[13] 张功成, 米立军, 吴景富, 等. 凸起及其倾没端——琼东南盆地深水区大中型油气田有利勘探方向[J]. 中国海上油气, 2010, 06: 360?368.
[14] 吴时国, 张光学, 郭常升, 等. 东沙海区天然气水合物形成及分布的地质因素[J]. 石油学报, 2004, 4: 7?12.
[15] 吴时国, 孙启良, 吴拓宇, 等. 琼东南盆地深水区多边形断层的发现及其油气意义[J]. 石油学报, 2009, 01: 22?26.
[16] KVENVOLDEN K A, MCMENAMIN M A. Hydrates of natural gas: A review of their geologic occurrence[J]. US Geological Survey Circular, 1980, 825:11.
[17] 朱伟林, 张功成, 钟锴, 等. 中国南海油气资源前景[J]. 中国工程科学, 2010, 05: 46?50.
[18] 姚根顺, 袁圣强, 马玉波, 等. 琼东南华光凹陷深水重力搬运沉积体系及其油气勘探[J]. 地球科学: 中国地质大学学报, 2009, 3: 471?476.
[19] 许东禹, 刘锡清, 张训华, 等. 中国近海地质[M]. 北京: 地质出版社, 1997: 13?42.
[20] 万志峰, 夏斌, 蔡周荣, 等. 南海北部油气成藏区带的划分与勘探前景[J]. 天然气工业, 2010, 08: 4?8.
[21] 王宏斌, 张光学, 梁劲, 等. 南海北部陆坡构造坡折带中的天然气水合物[J]. 沉积学报, 2008, 26(2): 283?293.
[22] 黄保家. 琼东南盆地天然气潜力及有利勘探方向[J]. 天然气工业, 1999, 19(1): 34?39.
[23] KAUL N, ROSENBERGER A, VILLINGER H. Compari- son of measured and BSR-derived heat flow values, Makran accretionary prism, Pakistan[J]. Marine Geology, 2000, 164(1-2): 37?51.
[24] 顾锋, 赵会军, 王树立. 盐类体系中天然气水合物相平衡条件的研究[J]. 石油与天然气化工, 2008, 37(2): 149?151.
[25] 孙志高, 郭开华, 樊栓狮, 等. 含乙二醇和盐体系气体水合物相平衡测定与预测[J]. 上海交通大学学报, 2002, 36(10): 1509?1512.
[26] 曾维平, 周蒂. GIS辅助估算南海南部天然气水合物资源量[J]. 热带海洋学报, 2003(6): 35?45.
[27] 袁叔尧, 邓九仔. 南海北部的温盐热结构[J]. 南海研究与开发, 1997(3): 19?24.
[28] XU W Y, RUPPEL C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research-Solid Earth, 1999, 104(B3): 5081?5095.
[29] BREWER P G, ORR F M, FRIEDERICH G, et al. Deep-ocean field test of methane hydrate formation from a remotely operated vehicle[J]. Geology, 1997, 25(5): 407?410.
[30] MAX M D. Gas hydrate and acoustically laminated sediments: Potential environmental cause of anomalously low acoustic bottom loss in deep-ocean sediments[R]. Washington D C: Naval Research Lab, 1990: 1?67.
[31] 陈多福, 李绪宣, 夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报, 2004, 47(3): 483?489.
[32] 何家雄, 祝有海, 姚永坚, 等. 南海北部边缘盆地二氧化碳地质及资源化利用[M]. 北京: 石油工业出版社, 2009: 45?163.
[33] 陈多福, 赵振华, 解启来, 等. 琼东南盆地崖13气田天然气形成水合物的温压条件和厚度计算[J]. 地球化学, 2001, 30(6): 585?591.
Outlines

/