Taking the Dongzhaigang National Mangrove Reserve in Hainan Island as example, we executed field measurements to obtain mangrove spectral data. On the basis of maximum likelihood classification purification mangrove information, combining with different kinds of mangrove spectral features and vegetation index difference, selected separability threshold, we established decision-making tree classification rule of SPOT5 images based on images between classifications, and tested its classification accuracy. Classification result shows that accuracy for each mangrove type reached 80% and the total accuracy added up to 90%. This research offers a foundation for operational remote sensing monitoring of mangrove ecosystem.
SU Xiu, ZHAO Dong-zhi, WANG Xiang, ZHONG Cai-rong
. Remote sensing classification of mangrove based on SPOT5 image[J]. Journal of Tropical Oceanography, 2012
, 31(6)
: 128
-134
.
DOI: 10.11978/j.issn.1009-5470.2012.06.020
[1] 范航清. 红树林——海岸环保卫士[M]. 广西: 广西科技出版社, 2000: 5.
[2] 张乔民, 隋淑珍. 中国红树林湿地资源及其保护[J]. 自然资源学报, 2001, 16(1): 28-36.
[3] 李春干. 红树林遥感成图研究综述[J]. 中南林业调查规划, 2002, 21(4): 52-58.
[4] 腾骏华, 刘宇, 顾德宇. 红树林智能遥感分类方法研究[J]. 台湾海峡, 2000, 16(3): 331-338.
[5] GREEN E P, CLARK C D, MUMBY P J, et al. Remote sensing techniques for mangrove mapping[J]. International Journal of Remote Sensing, 1998, 19(5): 935-956.
[6] GAO J. A hybrid method toward accurate mapping of mangroves in a marginal habitat from SPOT multispectral data[J]. International Journal of Remote Sensing, 1998, 19(10): 1887-1899.
[7] LIU ZHI GANG, LI JING, LIM BL, et al. Object-based Classification for Mangrove with VHR Remotely Sensed Image[J]. Proc SPIE, 2007, 6752(3): 83-87.
[8] SATAPATHY D R, KRUPADAM R J, KUMAR L P, et al. The application of satellite data for the quantification of mangrove loss and coastal management in the Godavari estuary, east coast of India[J]. Environmental Monitoring and Assessment, 2007, 134(1-3): 453-469.
[9] LE WANG, WAYNE P S, PENG GONG, et al. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery[J]. International Journal of Remote Sensing, 2004, 25(24): 5655-5668.
[10] KANNIAH K D, WAI N S, ALVIN L M S, et al. Linear mixture modeling applied to IKONOS data for mangrove mapping[C]. Ha Noi (VN): Asian Conference on Remote Sensing (ACRS2005), 2005: 7-16.
[11] DAHDOUH-GUEBAS F, HIEL E V, CHEN J C W, et al. Qualitative distinction of congeneric and introgressive mangrove species in mixed patchy forest assemblages using high spatial resolution remotely sensed imagery (IKONOS)[J]. Systematics and biodiversity, 2004, 2(2): 113-119.
[12] NEUKERMANS G, DANDOUH-GUEBAS F, KAIRO J G, et al. Mangrove species and stand mapping in Gazi Bay (Kenya) using Quickbird satellite imagery[J]. Spatial Science, 2008, 53(1): 75-86.
[13] LE WANG, WAYNE P S, PENG GONG, et al. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama[J]. Remote Sensing of Environment, 2004, 91(3-4): 432-440.
[14] EVERITT J H, YANG CHENGHAI, SRIHARAN S, et al. using high resolution satellite imagery to map black mangrove on the Texas Gulf coast[J]. Journal of Coastal Research, 2008 24(6): 1582-1586.
[15] 谢瑞虹, 周兆德. 海南岛红树植物群系类型及其特征 [J].海南大学学报: 自然科学版, 2008, 26(3): 81-85.
[16] 于祥, 赵冬至, 张丰收. 红树林的高光谱分析[J]. 滨州学校学报, 2006, 22(6): 53-56.
[17] 浦瑞良, 宫鹏. 高光谱遥感及其应用[M]. 北京: 高等教育出版社, 2000: 153.
[18] 郑伟, 曾志远. 遥感图像大气校正方法综述[J]. 遥感信息, 2004(4): 66-70.
[19] 陈忠. 高分辨率遥感图像分类技术研究[D]. 北京: 中国科学院遥感应用研究所, 2006: 21.
[20] 陈文, 史金成. 决策树分类技术研究[J]. 福建电脑, 2005(8): 5-6.
[21] 李爽, 张二勋. 基于决策树的遥感影像分类方法研究[J].地域研究与开发, 2003, 22(1): 17-21.
[22] HANSEN M, DUBAYAH R, DEFRIES R. Classification trees, An alternative to traditional land cover classifiers international[J]. Journal of Remote Sensing, 1996, 17: 1075-1081.
[23] 李德仁, 王树良, 李德毅, 等. 论空间数据挖掘和知识发现的理论与方法[J]. 武汉大学学报: 信息科学版, 2002, 27(3): 221-233.
[24] 赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003: 372-373.
[25] 翁强. 红树植物光谱特征和红树植物的遥感图像分类研究[D]. 厦门: 厦门大学, 2006: 61.
[26] 史培军, 陈晋, 潘耀忠. 深圳市土地利用变化机制分析[J].地理学报, 2000, 55(2): 47-50, 151-160.