The spatial distribution of sources and sinks of ocean mesoscale eddies

  • XU Chi ,
  • CHEN Gui-ying ,
  • SHANG Xiao-dong ,
  • HUANG Rui-xin
Expand
  • 1. State Key Laboratory of Oceanography in Tropics (South China Sea Institute of Oceanology), Chinese Academy of Sciences, Guangzhou 510301, China; 2. University of the Chinese Academy of Sciences, Beijing 100049, China; 3. Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

Received date: 2012-01-31

  Revised date: 2013-06-10

  Online published: 2013-06-10

Abstract

The difference between eddy formation and termination, based on eddy detection and tracking using 16-year satellite altimetry data, suggests both eddy formation and termination occur in the world oceans, except at the equator. There is no evidence of formation-dominant zone or termination-dominant zone in the open oceans, and along the eastern boundaries of the ocean basins eddy formation overpowers eddy dissipation while along the western boundaries eddy decaying overpowers eddy formation. A two-layer model is formulated, using the equivalent depth of the first baroclinic mode as the interface depth and assuming the barotropic mode and the first baroclinic mode have equal kinetic energy. We estimated the annual mean eddy energy change rate and the associated distribution of sources and sinks of mesoscale eddy energy. In addition, although dissipation of eddy energy is the dominating term within the western boundaries, intense dissipation also occurs in the ocean interior, in particular near intense currents and associated recirculation regimes. Furthermore, the distribution of the number of eddies generated minus decayed and the pattern of eddy-energy sources and sinks demonstrate that, although there are more eddies formed in the narrow bands of eastern boundaries, eddy energy growth rate in these regions is quite low due to weak mesoscale variability.

Cite this article

XU Chi , CHEN Gui-ying , SHANG Xiao-dong , HUANG Rui-xin . The spatial distribution of sources and sinks of ocean mesoscale eddies[J]. Journal of Tropical Oceanography, 2013 , 32(2) : 37 -46 . DOI: 10.11978/j.issn.1009-5470.2013.02.004

References

[1] CHELTON D B, SCHLAX M G, SAMELSON R M,et al. Global observations of large oceanic eddies[J]. Geophys Res Lett, 2007,34:L15606.

[2] 程旭华),(齐义泉). 基于卫星高度计观测的全球中尺度涡的分布和传播特征[J]. (海洋科学进展,) 2008,26(4):447-457.

[3] CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Prog Oceanogr, 2011,91:167-216.

[4] WANG GUIHUA, SU JILAN, CHU P C. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophys Res Lett, 2003,30(21):2121.

[5] LIU QINYU, ARATA K, SU JILAN,Recent Progress in Studies of the South China Sea Circulation[J]. J Oceanogr, 2008, 64: 753-762.

[6] XIU PENG, CHAI FEI, SHI LEI,et al. A census of eddy activities in the South China Sea during 1993-2007[J]. J Geophys Res, 2010,115:C03012.

[7] CHEN GENGXIN, HOU YIJUN, CHU XIAOQING. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. J Geophys Res, 2011,116:C06018.

[8] WANG LIPING, KOBLINSKY C J, HOWDEN S. Mesoscale variability in the South China Sea from the TOPEX/Poseidon altimetry data[J]. Deep-Sea Res Ⅰ, 2000,47:681-708.

[9] HE ZHIGANG, WANG DONG-XIAO, HU JIANYU. Features of eddy kinetic energy and variations of upper circulation in the South China Sea[J]. Acta Oceanol Sin, 2002,21(2):305-314.

[10] ZHUANG WEI, DU YAN, WANG DONG-XIAO,et al. Pathways of mesoscale variability in the South China Sea[J]. Chinese J Ocean Limn, 2010,28(5):1055-1067.

[11] ZHUANG WEI, XIE SHANG-PING, WANG DONG-XIAO,et al. Intraseasonal variability in sea surface height over the South China Sea[J]. J Geophys Res, 2010,115:C04010.

[12] FERRARI R, WUNSCH C. Ocean circulation kinetic energy: Reservoirs, sources, and sinks[J]. Annu Rev Fluid Mech, 2009,41:253-282.

[13] VOLKOV D L, LEE T, FU L L. Eddy-induced meridional heat transport in the ocean[J]. Geophys Res Lett, 2008,35:L20601.

[14] EARLY J J, SAMELSON R M, CHELTON D B. The evolution and propagation of quasigeostrophic ocean eddies[J]. J Phys Oceanogr, 2011,41:1535-1555.

[15] STAMMER D. On eddy characteristics, eddy transports, and mean flow properties[J]. J Phys Oceanogr, 1998,28:727-739.

[16] HOLLOWAY G. Estimation of oceanic eddy transports from satellite altimetry[J]. Nature, 1986,323:243-244.

[17] GENT P R, WILLEBRAND J, MCDOUGALL T J,et al. Parameterizing eddy-induced tracer transports in ocean circulation models[J]. J Phys Oceanogr, 1995,25:463-474.

[18] SWEENEY E N, MCGILLICUDDY D J, BUESSELER K O. Biogeochemical impacts due to mesoscale eddy activity in the Sargasso Sea measured at the Bermuda Atlantic Time-series Study (BATS)[J]. Deep-Sea Res Pt Ⅱ, 2003,50:3017-3039.

[19] NENCIOLI F, KUWAHARA V S, DICKEY T D,et al. Physical dynamics and biological implications of a mesoscale eddy in the lee of Hawai’i: Cyclone Opal observations during E-Flux Ⅲ[J]. Deep-Sea Res Pt Ⅱ, 2008,55:1252-1274.

[20] CHELTON D B, GAUBE P, SCHLAX M G,et al. The influence of nonlinear mesoscale eddies on near-surface chlorophyll[J]. Science, 2011,334:328-332.

[21] ADAMS D K, MCGILLICUDDY D J, ZAMUDIO L,et al. Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents[J]. Science, 2011,332(6029):580-583.

[22] DANIOUX E, KLEIN P, HECHT M W,et al. Emergence of wind-driven near-inertial waves in the deep ocean triggered by small-scale eddy vorticity structures[J]. J Phys Oceanogr, 2011,41(7):1297-1307.

[23] DENGLER M, SCHOTT F A, EDEN C,et al. Break-up of the Atlantic deep western boundary current into eddies at 8°S[J]. Nature, 2004,432(7020):1018-1020.

[24] LOZIER M S. Evidence for large-scale eddy-driven gyres in the North Atlantic[J]. Science, 1997,277(5324):361-364.

[25] GOULD W J, JR SCHMITZ W J, WUNSCH C. Preliminary field results for a Mid-Ocean Dynamics Experiment (MODE-0) [J]. Deep Sea Res, 1974,21:911-931.

[26] MORROW R, LE TRAON P-Y. Fifteen years of satellite altimetry and mesoscale ocean dynamics[C]//Proc. 15 Years of Progress in Radar Altimetry Symp. Venice: The European Space Agency, 2006. http://earth.esa.int/workshops/venice06/ participants/889/paper_889_morrow-v2.pdf.

[27] FU L L, CHELTON D B, LE TRAON P-Y,et al. Eddy dynamics from satellite altimetry[J]. Oceanogr, 2010,23(4):15-25.

[28] STAMMER D. Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements[J]. J Phys Oceanogr, 1997,27:1743-1769.

[29] ZAMUDIO L, HURLBURT H E, METZGER E J,et al. Tropical wave-induced oceanic eddies at Cabo Corrientes and the María Islands, Mexico[J]. J Geophys Res, 2007,112:C05048.

[30] FRANKIGOUL C, MULLER P. Quasi-geostrophic response of an infinite beta-plane ocean to stochastic forcing by the atmosphere[J]. J Phys Oceanogr, 1979,9:104-127.

[31] STAMMER D, NING C B, DIETERICH C. The role of variable wind forcing in generating eddy energy in the North Atlantic[J]. Prog Oceanogr, 2001,48:289-311.

[32] 刘先炳),(苏纪兰). 南海环流的一个约化模式[J]. (海洋与湖沼) 1992,23:167-174.

[33] 李立),(苏纪兰),(许建平). 南海的黑潮分离环流[J]. (热带海洋) 1997,16(2):42-57.

[34] WANG DONG-XIAO, XU HONGZHOU, LIN JING,et al. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004[J]. J Oceanogr, 2008,64(6):925-935.

[35] JIA YINGLAI, CHASSIGNET E P. Seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon Strait[J]. J Oceanogr, 2011,67(5):601-611.

[36] CHEN GENGXIN, HU PO, HOU YIJUN,et al. Intrusion of the Kuroshio into the South China Sea, in September 2008[J]. J Oceanogr, 2011,67(4):439-448.

[37] JIA YANLI, CALIL P H R, CHASSIGNET E P,et al. Generation of mesoscale eddies in the lee of the Hawaiian Islands[J]. J Geophys Res, 2011,116:C11009.

[38] CHU P C, CHEN YUCHUN, LU SHIHUA. Wind-driven South China Sea deep basin warm-core/cool-core eddies[J]. J Oceanogr, 1998,54:347-360.

[39] 王桂华),(苏纪兰),(齐义泉). 南海中尺度涡研究进展[J]. (地球科学进展) 2005,20(8):882-886.

[40] PULLEN J, DOYLE J D, MAY P,et al. Monsoon surges trigger oceanic eddy formation and propagation in the lee of the Philippine Islands[J]. Geophys Res Lett, 2008,35:L07604.

[41] WANG GUIHUA, CHEN DAKE, SU JILAN. Winter eddy genesis in the eastern South China Sea due to orographic wind jets[J]. J Phys Oceanogr, 2008,38:726-732.

[42] SCHMITTNER A, CHIANG J C H, HEMMING S R. Ocean Circulation: Mechanisms and Impacts—Past and Future Changes of Meridional Overturning[M]// WUNSCH C. The past and future ocean circulation from a contemporary perspective. Washington, D C : Geophys Monogr Ser Vol. 173, AGU, 2007:53-74.

[43] WUNSCH C. The work done by the wind on the oceanic general circulation[J]. J Phys Oceanogr, 1998,28(11):2332-2340.

[44] HUANG RIN XIN, WANG WEI, LIU LINGLING. Decadal variability of wind-energy input to the world ocean[J]. Deep-Sea Res Pt Ⅱ, 2006,53(1-2):31-41.

[45] SCOTT R, XU YONGSHENG. An update on the wind power input to the surface geostrophic flow of the World Ocean[J]. Deep-Sea Res Pt Ⅰ, 2009,56(3):295-304.

[46] XU CHI, SHANG XIAO-DONG, HUANG RUI XIN. Estimate of eddy energy generation/dissipation rate in the world ocean from altimetry data[J]. Ocean Dynam, 2011,61(4):525-541.

[47] CHENEY R E, RICHARDSON P L. Observed decay of a cyclonic Gulf Stream ring[J]. Deep Sea Res & Oceanogr Abstr, 1976,23(2):143-155.

[48] ZHAI XIAOMING, JOHNSON H L, MARSHALL D P. Significant sink of ocean-eddy energy near western boundaries[J]. Nature Geosci, 2010,3(9):608-612.

[49] WUNSCH C. The vertical partition of oceanic horizontal kinetic energy[J]. J Phys Oceanogr, 1997,27(8):1770-1794.

[50] FORGET G, WUNSCH C. Estimated global hydrographic variability[J]. J Phys Oceanogr, 2007,37(8):1997-2008.

[51] CHELTON D B, SCHLAX M G, SAMELSON R M,et al. Global observations of westward energy propagation in the ocean: Rossby waves or nonlinear eddies? [J]. Eos Trans, 2006,87(52):Fall Meet Suppl, Abstract #OS13E-07.

[52] MORROW R, BIROL, GRIFFIN D,et al. Divergent pathways of cyclonic and anti-cyclonic ocean eddies[J]. Geophys Res Lett, 2004,31(24):L24311.

Outlines

/