The sea surface temperature, eddy kinetic energy and available gravitational potential energy of cold-core eddies in response to tropical cyclones in the South China Sea

  • ZHU Hai-bin ,
  • SHANG Xiao-dong ,
  • CHEN Gui-ying ,
  • XU Chi
Expand
  • 1. State Key Laboratory of Tropical Oceanography, Guangzhou 510301, China; 2. University of Chinese Academy of Sciences, Beijing 100039, China

Received date: 2011-02-18

  Revised date: 2013-06-10

  Online published: 2013-06-10

Abstract

We chose 12 cases to analyze the responses of sea surface temperature (SST) in cord-core eddies to tropical cyclones (TCs). The maximum SST reduction in the cold-core eddy regions ranged from 2.7 to 9.15℃, while the mean SST reduction of the cold-core eddy regions was 1.35-5.89℃. The inverse correlation between the SST reduction in the cold-core eddy region and the moving speed of TC was studied using these 12 cases: the slower the moving speed of TC was, the more reduction the SST in the cold-core eddy region had. And there was a positive correlation between the SST reduction in the cold-core eddy region and the mean maximum wind speed of the TC: the weaker the mean maximum wind speed was, the less the SST decreased. Under the influence of TC, the eddy kinetic energy (EKE) and available gravitational potential energy (AGPE) of core-core eddies obviously increased, and the AGPE increased more than the EKE. The change of EKE (AGPE) after the TC passed to that before the TC correlated well with the average SST cooling in the cold-core eddy region, which reflects that under the influence of TC, the increases of EKE and AGPE can be used as indicators for the SST cooling in the cold-core eddy region.

Cite this article

ZHU Hai-bin , SHANG Xiao-dong , CHEN Gui-ying , XU Chi . The sea surface temperature, eddy kinetic energy and available gravitational potential energy of cold-core eddies in response to tropical cyclones in the South China Sea[J]. Journal of Tropical Oceanography, 2013 , 32(2) : 47 -54 . DOI: 10.11978/j.issn.1009-5470.2013.02.005

References

[1] SCHADE L R, EMANUEL K A. The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere ocean model[J]. J Atmos Sci, 1999,56:642-651.

[2] WU C, LEE C, LIN I. The effect of the ocean eddy on tropical cyclone intensity[J]. J Atmos Sci, 2007,64:3562-3578.

[3] Shay L K, Goni G J, Black P G. Effects of a warm oceanic feature on Hurricane Opal[J]. Monthly Weather Review, 2000,128(5):1366-1383.

[4] LIN I, WU C, EMANUEL K A,et al. The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy [J]. Mon Weather Rev, 2005,133:2635-2649.

[5] LIN I, CHEN C, PUN I,et al. Warm ocean anomaly, air sea fluxes, and the rapid intensification of Tropical Cyclone Nargis (2008)[J]. Geophys Res Lett, 2009,36, L03817. doi:10.1029/ 2008GL035815.

[6] WANG G H, SU J L, DING Y H,et al. Tropical cyclone genesis over the South China Sea[J]. J Mar Syst, 2007,68:318-326.

[7] 杨晓霞),(唐丹玲). 台风引起南海海表面降温的位置变化特征[J]. (热带海洋学报,) 2010,29(4):26-31.

[8] 崔红),(张书文),(王庆业). 南海对于台风伊布都响应的数值计算[J]. (物理学报,) 2009,58(9):6609-6615.

[9] PRICE J F. Upper ocean response to a hurricane[J]. J Phys Oceanogr, 1981,11:153-175.

[10] EMANUEL K. Thermodynamic control of hurricane intensity [J]. Nature, 1999,401:665-669.

[11] LU Z M, HUANG R X. The three-dimensional steady circulation in a homogenous ocean induced by a stationary hurricane[J]. J Phys Oceanogr, 2010,40:1441-1457.

[12] JACOB S D, SHAY L K, MARIANO A J. The 3D oceanic mixed layer response to Hurricane Gilbert[J]. J Phys Oceanogr, 2000,30:1407-1429.

[13] PRASAD T G, HOGAN P J. Upper-ocean response to Hurricane Ivan in a 1/25° nested Gulf of Mexico HYCOM[J]. J Geophys Res, 2007,112, C04013. doi:10.1029/ 2006JC003695.

[14] WALKER N D, LEBEN R R, BALASUBRAMANIAN S. Hurricane forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico[J]. Geophys Res Lett, 2005,32, L18610. doi:10.1029/2005GL023716.

[15] SHANG S L, LI L, SUN F Q,et al. Changes of temperature and bio-optical properties in the South China Sea in response to Typhoon Lingling, 2001[J]. Geophys Res Lett, 2008,35, L10602. doi:10.1029/2008GL033502.

[16] ZHENG Z W, HO C R, KUO N J. Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang[J]. Geophys Res Lett, 2008,35, L20603. doi:10.1029/2008GL035524.

[17] ROEMMICH D, GILSON J. Eddy transport of heat and thermocline waters in the north pacific: A key to interannual/decadal climate variability? [J]. J Phys Oceanogr, 2001,31:675-687.

[18] 程旭华),(齐义泉). 基于卫星高度计观测的全球中尺度涡的分布和传播特征[J]. (海洋科学进展,) 2008,26(4):447-453.

[19] FORGET G, WUNSCH C. Estimated global hydrographic variability [J]. J Phys Oceanogr, 2007,37:1997-2008.doi:10.1175/JPO03072.1

[20] LIN C Y, HO C R, ZHENG Z W,et al. Validation and variation of upper layer thickness in South China Sea from satellite altimeter data[J]. Sensors, 2008,8:3802-3818.doi:10.3390/s8063802

[21] HUANG R X Ocean circulation, wind-driven and thermohaline processes[M]. Cambridge: Cambridge University Press, 2010: 806.

[22] XU C, SHANG X D, HUANG R X. Estimate of eddy energy generation/dissipation rate in the world ocean from altimetry data[J]. Ocean Dynamics, 2011,61(4):525-541.

[23] LIU L L, WANG W, HUANG R X. The mechanical energy input to the ocean induced by tropical cyclones[J]. J Phys Oceanogr, 2008,38:1253-1266.

Outlines

/