Correction of ship-based turbulent wind velocity and characterization of turbulence in the Northwest Pacific

  • WANG Jie ,
  • DUAN Zi-qiang ,
  • YAO Xiao-hong ,
  • GAO Hui-wang
Expand
  • 1. College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266100, China; 2. Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China

Received date: 2012-02-27

  Revised date: 2012-06-07

  Online published: 2013-08-28

Abstract

Ship-based turbulent wind velocities were measured in the Northwest Pacific from September to November in 2005. The analysis results of turbulent wind velocity power spectrum showed an unexpected peak in the frequency range of 0.06-0.26 Hz, which was believed to be caused by platform rocking. This study proposed a new approach, i.e., an improved filtering correction, to minimize the interference from platform rocking on the signal of turbulent wind velocity. In a dual-logarithm coordinates system, the power spectral densities in the whole range except that from 0.06 to 0.26 Hz were used to linearly fit the trend of the power spectra between 0.06 and 0.26 Hz. Combined the original power spectra and the trend inversion, the corrected power spectra were obtained. Through the inverse Fourier transform, the new turbulent wind velocity data was obtained. Using the corrected turbulent wind velocity data, we estimated a few turbulent parameters in the Northwest Pacific during the observational period. These results showed that the atmospheric thermal action was strong during the observational period, leading to weakly unstable and unstable stratifications. When the standard deviation of dimensionless velocity was plotted against the stability parameter, their relationship accorded with the 1/3 power law. Intensities of turbulence in u, v, and wdirection were estimated to be 0.091, 0.076, and 0.043, respectively. The drag coefficient was estimated to be (1.30±0.26)×10-3, which is similar to the values reported in this region by other investigators.

Cite this article

WANG Jie , DUAN Zi-qiang , YAO Xiao-hong , GAO Hui-wang . Correction of ship-based turbulent wind velocity and characterization of turbulence in the Northwest Pacific[J]. Journal of Tropical Oceanography, 2013 , 32(3) : 9 -15 . DOI: 10.11978/j.issn.1009-5470.2013.03.002

References

[1] SA?D F, DRUILHET A. Experimental study of the atmospheric marine boundary layer from in-situ aircraft measurements (TOSCANE-T Campaign): Variability of boundary conditions and eddy flux parameterization[J]. Boundary-Layer Meteorol, 1991, 57(3): 219-249.
[2] HO D T, WANNINKHOF R, SCHLOSSER P, et al. Toward a universal relationship between wind speed and gas exchange: Gas transfer velocities measured with 3He/SF6 during the Southern Ocean Gas Exchange Experiment[J]. J Geophys Res, 2011, 116: C00F04
[3] GRACHEV A A, BARITEAU L, FAIRALL C W, et al. Turbulent fluxes and transfer of trace gases from ship-based measurements during TexAQS 2006[J]. J Geophys Res, 2011, 116: D13110.
[4] EDSON J B, HINTON A A, PRADA K E. Direct covariance flux estimates from mobile platforms at sea[J]. J Atmos Oceanic Technol, 1998, 15: 547-562.
[5] IAN M B. Spatially distributed measurements of platform motion for the correction of ship-based turbulent fluxes[J]. J Atmos Oceanic Technol, 2008, 25: 2007-2017.
[6] HUEBERT B J, BLOMQUIST B W, YANG M X, et al. Linearity of DMS transfer coefficient with both friction velocity and wind speed in the moderate wind speed range[J]. Geophys Res Lett, 2010, 37: L01605.
[7] ZENG LILI, WANG DONGXIAO. Intraseasonal variability of latent-heat flux in the South China Sea[J]. Thero Appl Climatol, 2009, 97: 53-64.
[8] 曾丽丽, 施平, 王东晓, 等. 南海蒸发和净淡水通量的季节和年际变化[J]. 地球物理学报, 2009, 52(4): 929-938.
[9] ZENG LILI, SHI PING, LIU W T, et al. Evaluation of a satellite-derived latent heat flux product in the South China Sea: A comparison with moored buoy data and various products[J]. Atmos Res, 2009, 94: 91-105.
[10] 陈陟, 李诗明, 吕乃平, 等. TOGA-COARE IOP期间的海气通量观测结果[J]. 地球物理学报, 1997, 40(6): 753-761.
[11] 胡敦欣, 赵永平, 陆蔼庆, 等. 船上海气之间湍流通量的观测研究[J]. 海洋与湖沼, 1996, 27(2): 163-168.
[12] 闫俊岳, 姚华栋, 李江龙, 等. 1998年南海季风爆发期间近海面层大气湍流结构和通量输送的观测研究[J]. 气候与环境研究, 2000, 5(4): 447-458.
[13] 曲绍厚, 胡非, 李亚秋. 1998年SCSMEX期间南海夏季风海气交换的主要特征[J]. 气候与环境研究, 2000, 5(4): 434-446.
[14] 王仁磊, 高会旺, 顾明, 等. 北黄海秋季海表面热量通量与能量收支的观测研究[J]. 中国海洋大学学报, 2009, 39: 159-164.
[15] 闫俊岳, 刘久萌, 蒋国荣, 等. 南海海-气通量交换研究进展[J]. 地球科学进展, 2007, 22(7): 686-697.
[16] LAUVSET S K, MCGILLIS W R, BARITEAU L, et al. Direct measurements of CO2 flux in the Greenland Sea[J]. Geophys Res Lett, 2011, 38: L12603.
[17] 钱莉英, 周乐义, 周晓平. 一种船载海面通量观测的校正方法[J]. 海洋科学, 1994, 4: 59-63.
[18] 李曜, 徐德伦. 由船载超声风速仪数据计算U*的一种方法[J]. 中国海洋大学学报, 2006, 36: 13-19.
[19] BERGER B W, DAVIS K J, YI CHUIXIANG, et al. Long-term carbon dioxide fluxes from a very tall tower in a northern forest: flux measurement methodology[J]. J Atmos Oceanic Technol, 2001, 18: 529-542.
[20] 高会旺, 顾明, 王仁磊, 等. 北黄海海域大气湍流强度特征及风速标准差相似性分析[J]. 中国海洋大学学报, 2009, 39(4): 563-568.
[21] FOKEN T H, WICHURA B. Tools for quality assessment of surface-based flux measurements[J]. Agric For Meteor, 1996, 78: 83-105
[22] HEDDE T, DURAND P. Turbulence intensities and bulk coefficients in the surface layer above the sea[J]. Bound-Layer Meteorol, 1996, 71: 415-432.
[23] 马耀明, 王介民, 刘巍, 等. 南沙海域近海层大气湍流结构及输送特征研究[J]. 大气科学, 1997, 21(3): 357-365.
[24] NAITO G. Direct measurements of momentum and sensible heat fluxes at the tower in the open sea[J]. J Meteorol Soc Jpn, 1978, 56: 25-34.
[25] 闫俊岳, 唐志毅, 姚华栋, 等. 2002年南海季风爆发前后西沙海区海-气通量交换及其变化[J]. 地球物理学报, 2005, 48(5): 1001-1010.
[26] 孙启振, 陈锦年, 闫俊岳, 等. 2008年南海季风爆发前后西沙海域海气通量变化特征[J]. 海洋学报, 2010, 32(4): 12-23.
[27] 马耀明, 王介民, 张庆荣, 等. 南沙海域大气湍流通量输送特征分析[J]. 高原气象, 1997, 16(1): 45-51.
[28] 曲绍厚. 西太平洋热带海域动量、感热和潜热等湍流通量的观测研究[J]. 气象学报, 1988, 46(4): 452-461.
[29] 陈奕德, 蒋国荣, 张韧, 等. 2002年南海夏季风爆发期间南海北部海气通量分析与比较[J]. 大气科学, 2005, 29(5): 761-770.

Outlines

/