Marine Hydrology

Progress on the hydrodynamic characteristics and the hypoxia phenomenon in the Pearl River Estuary

  • CAI Shu-qun ,
  • ZHENG Shu ,
  • Wei Xing
Expand
  • 1. State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences), Guangzhou 510301, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China;

Received date: 2012-02-11

  Revised date: 2012-03-13

  Online published: 2013-11-21

Abstract

The Pearl River Estuary is affected by river discharge, tidal currents and the near-shore circulation in the South China Sea. Thus, its hydrodynamic condition is very complicated. The tide at the Pearl River Estuary is mainly irregular semidiurnal type, its tidal amplitude increases from south to north, and its tidal flow reciprocates obviously along the coastline. The tidal front is related to the tidal dynamics and river discharge. The surface and bottom salinity fronts are mainly parallel to the shoreline. In winter, the surface front is apparently near the west coastline of the estuary, whilst in summer, the front spreads away from the estuary because of river discharge. The bottom front is not affected obviously by the season, and in both summer and winter seasons, the bottom front is stronger than the surface front. The tidal dynamics could affect the saline water intrusion. When the river discharge is weak, the tidal dynamics become predominant; therefore, the strength of the saline water intrusion becomes stronger, and the saline water intrusion could influence the strength and position of the front. Furthermore, because the tide and upwelling could destroy the water stratification occasionally, the direction and the strength of vertical convection of dissolved oxygen could change periodically with tides. The hydrodynamics of the Pearl River Estuary obviously influence the bottom hypoxia of the estuary. This paper summarizes the progress on the hydrodynamic characteristics and the hypoxia, and discusses some issues that are worth studying in the future.

Cite this article

CAI Shu-qun , ZHENG Shu , Wei Xing . Progress on the hydrodynamic characteristics and the hypoxia phenomenon in the Pearl River Estuary[J]. Journal of Tropical Oceanography, 2013 , 32(5) : 1 -8 . DOI: 10.11978/j.issn.1009-5470.2013.05.001

References

[1]黄镇国, 张伟强. 珠江河口近期演变与滩涂资源[J]. 热带地理, 2004, 24(2): 97-102.
[2]黄镇国, 张伟强. 人为因素对珠江三角洲近30年地貌演变的影响[J]. 第四纪研究, 2004, 24(4): 394-401.
[3]林祖亨, 梁舜华. 珠江口水域的潮流分析[J]. 海洋通报, 1996, 15(2): 11-12.
[4]李春初. 中国南方河口过程与演变规律[M]. 北京: 科学出版社, 2004: 1-260.
[5]珠江三角洲环境保护规划编委会. 珠江三角洲环境保护规划[M]. 北京: 中国环境科学出版社, 2006: 1-419.
[6]张恒, 李适宇. 夏季珠江口溶解氧垂向输运数值模拟研究[J]. 海洋学报: 中文版, 2010, 32(1): 34-46.
[7]郑舒. 珠江口盐度锋年际变化的动力机制研究[D]. 广州:中国科学院南海海洋研究所, 2013: 1-67.
[8]ZHANG WEI, RUAN XIAOHONG, ZHENG JINHAI, et al. Long-term change in tidaldynamics and its cause in the Pearl River Delta, China[J]. Geomorphology, 2010, 120(3-4): 209-223.
[9]宋定吕, 阮孤松. 珠江八大口门潮汐潮量的初步分析[G]//珠江口海岸和海涂资料综合调查研究文集: 四. 广州: 广东科技出版社, 1986: 62-71.
[10]罗宪林, 杨清书, 贾良文. 珠江三角洲网河河床演变[M]. 广州: 中山大学出版社, 2002: 1-213.
[11]王建美, 俞光耀, 陈宗镛. 珠江口伶仃洋海区的潮流数值模拟[J]. 海洋学报: 中文版, 1992, 14(2): 26-34.
[12]韩保新, 郭振仁, 冼开康, 等. 珠江河口海区潮流的数值模拟[J]. 海洋与湖沼, 1992, 23(5): 475-484.
[13]方国洪, 郑文振, 陈宗镛, 等. 潮汐和潮流的分析和预报[M]. 北京: 海洋出版社, 1986: 1-18.
[14]包芸, 任杰. 采用改进的盐度场数值格式模拟珠江口盐度分层现象[J]. 热带海洋学报, 2001, 20(4): 28-34.
[15]包芸, 任杰. 珠江河口西南风强迫下潮流场的数值模拟[J]. 海洋通报, 2003, 22(4): 8-14.
[16]段凌云. 长江口外春季盐度锋锋面不规则流现象及其意义探讨[D]. 上海: 华东师范大学, 2006: 1-71.
[17]王磊. 南海北部陆架区域的海洋锋及锋面涡旋研究[D]. 青岛:中国海洋大学, 2004: 1-136.
[18]应秩甫. 珠江口伶仃洋锋的类别及其对沉积的影响[J]. 台湾海峡, 2000, 19(2): 147-156.
[19]马应良, 许时耕, 钟欢良, 等. 南海北部陆架邻近水域十年水文断面调查报告[M]. 北京: 海洋出版社, 1990: 42-93, 184-214.
[20]包芸, 任杰. 伶仃洋盐度高度层化现象及盐度锋面的研究[J]. 水动力学研究与进展. 2005, 20(6): 689-693.
[21]SU JILAN. Overview of the South China Sea circulation and its in?uence on the coastal physical oceanography outside the Pearl River Estuary[J]. Continental Shelf Research, 2004, 24: 1745-1760.
[22]DONG LIXIAN, SU JILAN, WONG LAIAH, et al. Seasonal variation and dynamics of the Pearl River plume[J]. Continental Shelf Research, 2004, 24(16): 1761-1777.
[23]MAO QINGWEN, SHI PING, YIN KEDONG, et al. Tides and tidal currents in the Pearl River Estuary[J]. Continental Shelf Research, 2004, 24(16): 1797-1808.
[24]庞海龙, 高会旺, 宋萍萍, 等. 夏季珠江冲淡水扩散路径分析[J]. 海洋预报, 2006, 23(3): 58-63.
[25]陈伟, 王小华. 象山港盐度锋面及其动力成因[J]. 东海海洋, 1998, 16(1): 1-9.
[26]PHILIP M O, DAVID A J. Observations at the tidal plume front of a high-volume river outflow[J]. Geophysical Research Letters, 2005, 32: 1-4.
[27]OU SUYING, ZHANG HONG, WANG DONGXIAO, et al. Horizontal characteristics of buoyant plume off the Pearl River Estuary during summer [J]. Journal of Coastal Research, 2007, 50(Special Issue): 652-657.
[28]OU SUYING, ZHANG HONG, WANG DONGXIAO. Dynamics of the buoyant plume off the Pearl River Estuary in summer[J]. Environmental Fluid Mechanics, 2009, 9: 471-492.
[29]JI XIAOMEI, SHENG JINYU, TANG LIQUN, et al. Process study of circulation in the Pearl River Estuary and adjacent coastal waters in the wet season using a triply-nested circulation model[J]. Ocean Modelling, 2011, 38(1-2): 138-160.
[30]WONG L A, CHEN J C, XUE H, et al. A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters: 1. Simulations and comparison with observations[J]. Journal of Geophysical Research-Oceans, 2003, 108(C5): 3156, doi:10.1029/2002JC001451.
[31]WONG L A, CHEN J C, XUE H, et al. A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters: 2. Sensitivity experiments[J]. Journal of Geophysical Research-Oceans, 2003, 108(C5): 3157, doi:10.1029/2002JC001452.
[32]TANG LIQUN, SHENG JINYU, JI XIAOMEI, et al. Investigation of three-dimensional circulation and hydrography over the Pearl River Estuary of China using a nested-grid coastal circulation model[J]. Ocean Dynamics, 2009, 59(6): 899-919.
[33]WONG L A, CHEN J C, DONG LIXIAN. A model of the plume front of the Pearl River Estuary, China and adjacent coastal waters in the winter dry season[J]. Continental Shelf Research, 2004, 24(16): 1779-1795.
[34]张恒. 珠江口海域潮汐混合锋面形成机制数值模拟研究[D]. 广州: 中山大学, 2005: 1-122.
[35]陈水森, 方立刚, 李宏丽, 等. 珠江口咸潮入侵分析与经验模型——以磨刀门水道为例[J]. 水科学进展, 2007, 18(5): 751-755.
[36]胥加仕, 罗承平. 近年来珠江三角洲成潮活动特点及重点研究领域探讨[J]. 人民珠江, 2005, 2: 21-23.
[37]茅志昌. 长江河口盐水人侵锋研究[J]. 海洋与湖沼, 1995, 26(6): 643-649.
[38]李素琼, 敖大光. 海平面上升与珠江口成潮入侵变化[J]. 人民珠江, 2000, 6: 42-44.
[39]周文浩. 海平面上升对珠江三角洲咸潮入侵的影响[J]. 热带地理, 1998, (3): 266-269, 285.
[40]朱三华, 沈汉堃, 林焕新, 等. 珠江三角洲咸潮活动规律研究[J]. 珠江现代建设, 2007, (6): 1-7.
[41]LIU JIEBIN, BAO YUN. Spacial distribution of salinity and the mechanism of saltwater intrusion in the Modaomen water channel of Pear River Estuary[J]. Recent Progress in Fluid Dynamics Research, 2011, 1376: 405-407.
[42]童娟. 珠江流域概况及水文特性分析[J]. 水利科技与经济, 2007, 13(1): 31-33.
[43]黄宇铭. 近四年磨刀门水道咸界运动规律及垂向盐水楔结构研究[D]. 广州: 中山大学, 2011: 1-90.
[44]刘雪峰, 魏晓宇, 蔡兵. 2009年秋季珠江口咸潮与风场变化的关系[J]. 广东气象, 2010, 32(2): 11-13.
[45]WU JIAXUE, LIU HUAN, REN JIE. et al. Cyclonic spirals in tidally accelerating bottom boundary layers in the Zhujiang (Pearl River) Estuary[J]. American Meteorological Society, 2011, 41: 1209-1226.
[46]罗琳. 夏季珠江河口底层水体缺氧现象的模拟研究[D]. 广州: 中山大学, 2005: 1-120.
[47]罗琳, 李适宇, 王东晓. 珠江河口夏季缺氧现象的模拟[J]. 水科学进展, 2008, 19(5): 729-735.
[48]CHEN CHUANGCHI, CONG CHINGGWO, SHIAH FUHKWO. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world[J]. Marine Environmental Research, 2007, 64: 399-408.
[49]DANIEL J C, JACOB C, RAQUEL V S, et al. Ecosystem thresholds with hypoxia[J]. Hydrobiologia, 2009, 629: 21-29.
[50]叶丰, 黄小平. 近岸海域缺氧现状、成因及其生态效应[J]. 海洋湖沼通报, 2010, 3: 91-99.
[51]陈春辉, 王春生, 许学伟. 河口缺氧生物效应研究进展[J]. 生态学报, 2009, 29(5): 2595-2602.
[52]RABALAIS N N, TURNER R E, SEN GUPTA B K, et al. Hypoxia in the northern gulf of Mexico:does the science support the plan to reduce, mitigate, and control hypoxia?[J]. Estuaries and Coasts, 2007, 30(5): 753-772.
[53]ZHANG J, GILBERT D, GOODAY A J, et al. Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development[J]. Biogeosciences, 2010, 7: 1443-1467.
[54]CHAN F, BARTH J A, LUBCHENCO J, et al. Emergence of anoxia in the California current large marine ecosystem[J]. Science. 2008, 319: 920.
[55]DIAZ R J. Overview of hypoxia around the world[J]. Journal of Environmental Quality, 2001, 30(2): 275-281.
[56]WEI HAO, HE YUNCHANG, LI QINGJI, et al. Summer hypoxia adjacent to the Changjiang Estuary[J]. Journal of Marine Systems, 2007, 67(3-4): 292-303.
[57]CHEN CHUNGCHI, GONG GWOCHING, SHIAH FUHKWO. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world[J]. Marine Environmental Research, 2007, 64: 399-408.
[58]林卫强, 李适宇. 珠江口水域化学耗氧量、溶解氧、无机磷与有机磷的三维水质数学模拟[J]. 海洋学报, 2003, 25(3): 129-137.
[59]DAI MINHAN, GUO XIANGHUI, ZHAI WEIDONG, et al. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought[J]. Marine Chemistry, 2006, 102(1-2): 159-169.
[60]彭云辉, 朱俊怀, 彭玉燕. 珠江河口水体中DO和COD的调查[J]. 南海研究与开发, 1992, (3): 14-19.
[61]林洪瑛, 刘胜, 韩舞鹰. 珠江口底层海水季节性缺氧现象及其引发的CTB 潜在威胁[J]. 湛江海洋大学学报, 2001, 21: 25-29.
[62]林卫强, 李适宇. 夏季伶仃洋COD、DO的垂向分布及其影响因素[J]. 中山大学学报:自然科学版, 2002, 41(4): 82-86.
[63]YIN KEDONG, LIN ZHIFENG, KE ZHIYUAN. Temporal and spatial distribution of dissolved oxygen in the Pearl River Estuary and adjacent coastal waters[J]. Continental Shelf Research, 2004, 24: 1935-1948.
[64]罗琳, 李适宇, 厉红梅. 夏季珠江口水域溶解氧的特征及影响因素[J]. 中山大学学报:自然科学版, 2005, 44(6): 118-122.
[65]林卫强. 三维水环境数学模型的开发及其在珠江口的应用[D]. 广州: 中山大学, 2003: 1-165.
[66]管卫兵, 王丽娅, 许东峰. 珠江河口氮和磷循环及溶解氧的数值模拟Ⅰ.模式建立[J]. 海洋学报: 中文版, 2003, 25(1): 52-60.
[67]管卫兵, 王丽娅, 许东峰. 珠江河口氮和磷循环及溶解氧的数值模拟Ⅱ.模拟结果[J]. 海洋学报: 中文版, 2003, 25(1): 61-68.
[68]张恒, 李适宇. 基于改进的RCA水质模型对珠江口夏季缺氧及初级生产力的数值模拟研究[J]. 热带海洋学报, 2010, 29(1): 20-31.
[69]LIU H, WU C Y, BAO Y. Tidal energy fluxe and transformation in the Lingdingyang Estuary[J]. Recent Progresses in Fluid Dynamics Research, 2011, 1376: 379-381.
Outlines

/