This study assesses the accuracy of Aquarius/SAC-D satellite sea surface salinity (SSS) data in the South China Sea using Argo buoy data, and analyzes the influencing factors. The results indicate that the linear relationship of co-located data is not significant. The SSS inversion accuracy in the South China Sea and northeastern waters is 0.62‰ and 0.70‰, respectively. Located at low latitude, the sea surface temperature (SST) in the South China Sea is high, which has a small effect on the accuracy. The factors that influence the SSS accuracy may be the strong breeze, rainfall and land radio frequency interference (RFI), etc. The results show that the SSS retrieval error increases with wind speed when the wind speed is greater than 7 m·s-1, and that the error has a clear ascendant trend. Meanwhile, the South China Sea is seriously contaminated by the land RFI. Even if the Aquarius/SAC-D SSS product has corrected the land RFI in its new Version 1.3. The RFI is not eliminated, and may still have an influence on the accuracy.
WANG Xin-xin
,
YANG Jian-hong
,
ZHAO Dong-zhi
,
WANG Xiang
,
SUN Guang-lun
. Assessment of Aquarius/SAC-D salinity data accuracy in the South China Sea[J]. Journal of Tropical Oceanography, 2013
, 32(5)
: 23
-28
.
DOI: 10.11978/j.issn.1009-5470.2013.05.004
[1]杨斌利. 用于海洋盐度观测的主被动联合遥感器[J]. 空间电子技术, 2010, 2: 49-54.
[2]LAGERLOEF G, COLOMB F R, LEVINE D M, et al. The Aquarius/SAC-D mission: Designed to meet the salinity remote sensing challenge[J]. Oceanography, 2008, 21(1): 68-81.
[3]LEVINE D M, LAGERLOEF G, COLOMB F R, et al. Aquarius: An instrument to monitor sea surface salinity from space[J]. IEEE Transaction on Geoscience and Remote Sensing, 2007, 45(7): 2040-2050.
[4]GUNN J, LAGERLOEF G. The Aquarius salinity satellite/ in-situ data comparison processing system—A Demons- tration[C/OL]//Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society (Annex). Paris: ESA Publications Division, 2010[2013-06-10]. http://www.oceanobs09.net/proceedings/ac/.
[5]王新新,赵冬至,杨建洪,等.海表面盐度卫星微波遥感研究进展[J]. 遥感技术与应用, 2012,27 (5): 671-679.
[6]YUEH S H, RICHARD W, WILLIAM J W, et al. Error sources and feasibility for microwave remote sensing of ocean surface salinity[J].IEEE Transaction on Geoscience and Remote Sensing, 2001, 39(5): 1049-1060.
[7]BUSALACCHI A, ALORY G, ARKIN P, et al. Satellite sea surface salinity error in the Tropics[C/OL] //2011 American Geophysical Union (AGU) Fall Meeting. College Park: Earth System Science Interdisciplinary Center, 2011[2013-0610]. http://essic.umd.edu/joom2/index.php/publications/posters-2.
[8]WERDELL P J. Aquarius Validation Data Segment (AVDS) to Aquarius Data Processing Segment (ADPS) interface control document (Revision 1.1)[R]. Greenbelt: Goddard Space Flight Center (GSFC), 2011: 1-11.
[9]LAGERLOEF G, TORRUSIO S, LEVINE D, et al. Salinity and water cycle: Aquarius/SAC-D satellite mission early results[C]//World Climate Research Programme Open Science Conference. Geneva: World Meteorological Organization, 2011[2013-06-10]. http://www.wcrp-climate. org/conference2011/posters/C14/C14_Lagerloef_T23A.pdf.
[10]刘增宏, 许建平, 朱伯康. 一个Argo剖面浮标的观测过程及其资料应用探讨[J].热带海洋学报, 2008, 27(4): 66-72.
[11]童明荣, 刘增宏, 孙朝辉, 等. ARGO剖面浮标数据质量控制过程剖析[J].海洋技术, 2003, 22(4): 79-84.
[12]WENTZ F J, LEVINE D. Algorithm theoretical basis document Aquarius Level-2 radiometer algorithm: Revision 1[R]//( RSS Technical Report 012208). Santa Rosa: Remote Sensing Systems, 2008: 1-14.
[13]WENTZ F J, LEVINE D. Algorithm Theoretical Basis Document Aquarius Salinity Retrieval Algorithm: Final Pre-Launch Version[R]// RSS Technical Report 011811. Santa Rosa: Remote Sensing Systems, 2011: 14-20.
[14]LAGERLOEF G, BOUTIN J CHAO YI, et al. Resolving the global surface salinity field and variation by blending satellite and in situ observation[C/OL]//Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society (Vol. 2). Paris: ESA Publications Division, 2010[2013-06-10]. http://www.oceanobs09.net/ proceedings/cwp/cwp51/.
[15]LAGERLOEF G, KAO H Y, YUEH S, et al. Aquarius satellite salinity measurements assessment[C/OL]//7th Aquarius/SAC-D Science Meeting. Buenos Aires: CONAE, 2012[2013-06-10]. http://www.conae.gov.ar/prensa/Eventos/ Day2MORNING1/KAO.pdf.
[16]王杰, 矫玉田, 曹勇, 等. 海表面盐度遥感技术的发展与应用[J]. 海洋技术, 2006, 36(10): 968-976.
[17]REUL N, CHAPRON B.A model of sea-foam thickness distribution for passive microwave remote sensing applications[J]. Journal of Geophysical Research, 108(C10), 2003: 1-12.
[18]GABARRÓ C, CAMES A, FONT J. Retrieved sea surface salinity and wind speed from L-band measurements for WISE and EuroSTARRS Campaigns[C]//Proceedings of the First Results Workshop on EuroSTARRS, WISE, LOSAC Campaigns. Toulouse: Center for the Study of the Biosphere from Space (CESBIO), 2003: 163-171.
[19]殷晓斌.海面风矢量、温度和盐度的被动微波遥感及风对温盐遥感的影响研究[D].青岛: 中国海洋大学, 2007: 26-39.
[20]BURRAGE D, WANG D, WESSON J, et al. SMOS observations of the Gulf of Mexico and Caribbean Sea: Evaluating surface salinity retrieval and roughness correction performance[C]//European Geosciences Union General Assembly. Vienna: European Geosciences Union, 2011: XY632.
[21]YUEH S. Modeling of wind direction signals in polarimetric sea surface brightness temperatures[J]. IEEE Transaction on Geoscience and Remote Sensing, 1997, 35(6): 1400-1418.
[22]REUL N, CHAPRON B. SMOS-salinity data processing study: Improvements in emissivity models[R]//(IFREMER Technical Report-WP 1100. Paris: ESA Publications Division, 2001: 37-87.
[23]BISWAS S. Brightness temperature calibration of SAC-D/ Aquarius microwave radiometer[D]. Orlando: University of Central Florida, 2012: 59-113
[24]李秀珍, 梁卫, 温之平, 等. 南海盐度对南海夏季风响应的初步分析[J]. 热带海洋学报, 2011, 30(1): 29-34.
[25]刘春霞, 何溪澄. QuikSCAT散射计矢量风统计特征及南海大风遥感分析[J]. 热带气象学报, 2003, 19(Supp1): 107-117.
[26]WENTZ F J. The estimation of TOA TB from Aquarius observations[R]// (RSS Technical Report). Santa Rosa: Remote Sensing Systems, 2006: 1-21.
[27]曾丽丽, 陈举, 施平. 夏季降雨过程对南海上层盐度的可能影响[J]. 热带海洋学报, 2007, 25(3): 11-17.
[28]庄伟, 胡建宇, 贺志刚, 等.2000年7—8月台湾海峡南部至珠江口附近海域表层温、盐度分析[J]. 热带海洋学报, 2003, 22(4): 68-76.