Marine Geology

Variation of skeletal extension rate for Porites corals around Weizhou Island in response to global warming and increase of extreme events

  • CHEN Tian-ran ,
  • ZHENG Zhao-yong ,
  • MO Shao-hua ,
  • ZHOU Xiong ,
  • CHEN Te-gu
Expand
  • 1. Key laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 2. South China Sea Branch, State Oceanic Administration, Guangzhou 510300, China; 3. Beihai Marine Environmental Monitoring Center, State Oceanic Administration, Beihai 536000, China

Received date: 2012-05-21

  Revised date: 2012-06-06

  Online published: 2013-11-21

Abstract

Whether or not relatively higher latitude areas, say in the northern South China Sea, can become coral refuges under global warming is not clear, due to limited study cases. In this paper, we determined the skeletal extension rate of Poritescorals collected around Weizhou Island using X-ray photography. Using sea surface temperature (SST) data recorded at Weizhou Island, we calculated the degree heating weeks (DHW) and the positive and negative SST_anomalies ??(±SST anomalies), which revealed historical extreme high and low temperature events more clearly. We combined coral skeletal extension rate with the SST_anomalies and DHW and analyzed the variation of skeletal extension rate in response to global warming and increase of extreme events, and further explored the ‘refuge theory’ in the relatively higher latitude corals from the northern South China Sea. The Poritescorals were 27 years old, from 1984 to 2010. The skeletal growth rates ranged from 3.1 to 9.9 mm·year-1, with an averaged rate of 6.3 mm·year-1. The variation of skeletal growth rate for all Poritescorals collected consistently showed a downward trend, especially after 1997, decreased by 26% compared to the previous years from 1984-1997. Global warming, rapidly increasing SST, and increased extreme events caused the decline of skeletal growth rate of global corals, including corals from Weizhou Island. The relatively higher latitude corals in the South China Sea are vulnerable in the face of rapid climate change, especially the frequent extreme events.

Cite this article

CHEN Tian-ran , ZHENG Zhao-yong , MO Shao-hua , ZHOU Xiong , CHEN Te-gu . Variation of skeletal extension rate for Porites corals around Weizhou Island in response to global warming and increase of extreme events[J]. Journal of Tropical Oceanography, 2013 , 32(5) : 79 -84 . DOI: 10.11978/j.issn.1009-5470.2013.05.011

References

[1]RIEGL B, PILLER W E. Possible refugia for reefs in times of environmental stress [J]. Int J Earth Sci, 2003, 92: 520-531.
[2]HALFAR J, GODINEZ-ORTA L, RIEGL B, et al. Living on the edge: high-latitude Porites carbonate production under temperate eutrophic conditions [J]. Coral Reefs, 2005, 24: 582-592.
[3]CHEN T R, YU K F, SHI Q, et al. Twenty-five years of change in scleractinian coral communities of Daya Bay (northern South China Sea) and its response to the 2008 AD extreme cold climate event [J]. Chin Sci Bull, 2009, 54: 2107-2117.
[4]KLEYPAS J A, MCMANUS J W, MENEZ L A B. Environmental limits to coral reef development: Where do we draw the line? [J]. Amer Zool, 1999, 39: 146-159.
[5]梁文, 黎广钊. 涠洲岛珊瑚礁分布特征与环境保护的初步研究[J]. 环境科学研究, 2002, 15(6): 5-7.
[6]黄晖, 马斌儒, 练健生, 等. 广西涠洲岛海域珊瑚礁现状及其保护策略研究[J]. 热带地理, 2009, 29(4): 307-312.
[7]梁文, 黎广钊, 范航清, 等. 广西涠洲岛造礁石珊瑚属种组成及其分布特征[J]. 广西科学, 2010, 17(1): 93-96.
[8]梁文, 黎广钊, 范航清, 等. 广西涠洲岛珊瑚礁物种生物多样性研究[J]. 海洋通报, 2010, 29(4): 412-416.
[9]梁文, 张春华, 叶祖超, 等. 广西涠洲岛造礁珊瑚种群结构的空间分布[J]. 生态学报, 2011, 31(1): 39-46.
[10]余克服, 蒋明星, 程志强, 等. 涠洲岛42年来海面温度变化及其对珊瑚礁的影响[J]. 应用生态学报, 2004, 15(3): 506-510.
[11]Intergovernmental Panel on Climate Change (IPCC). IPCC Fourth Assessment Report: Climate Change 2007 (AR4) [R]. Geneva: IPCC, 2007: 104.
[12]LI S, YU K F, CHEN T R, et al. Assessment of coral bleaching using symbiotic zooxanthellae density and satellite remote sensing data in the Nansha Islands, South China Sea [J]. Chin Sci Bull, 2011, 56(10): 1031-1037.
[13]李淑, 余克服, 施祺, 等. 海南岛鹿回头石珊瑚对高温响应行为的实验研究[J]. 热带地理, 2008, 28(6): 534-539.
[14]李淑, 余克服, 施祺, 等. 造礁石珊瑚对低温的耐受能力及响应模式[J]. 应用生态学报, 2009, 20(9): 2289-2295.
[15]LOUGH J M. Coral calcification from skeletal records revisited [J]. Mar Ecol Prog Ser, 2008, 373: 257-264.
[16]COOPER T F, DE'ATH G., FABRICIUS K A E, et al. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef [J]. Global Change Biol, 2008, 14: 529-538.
[17]DE'ATH G, LOUGH J M, FABRICIUS K E. Declining coral calcification on the Great Barrier Reef [J]. Science, 2009, 323: 116-119.
[18]CARILLI J E, NORRIS R D, BLACK B, et al. Century-scale records of coral growth rates indicate that local stressors reduce coral thermal tolerance threshold [J]. Global Change Biol, 2010, 16: 1247-1257.
[19]CASTILLO K D, RIES J B, WEISS J M. Declining coral skeletal extension for forereef colonies of Siderastrea siderea on the Mesoamerican Barrier Reef System, Southern Belize [J]. PLOS ONE, 2011, 6(2), e14615. doi:10.1371/journal. pone.0014615.
[20]黎广钊, 梁文, 农华琼, 等. 涠洲岛珊瑚礁生态环境条件初步研究[J]. 广西科学, 2004, 11(4): 379-384.
[21]KNUTSON D W, BUDDERUETER R W, SMITH S V. Coral chronometers: seasonal growth bands in reef corals [J]. Science, 1972, 177: 270-272.
[22]EAKIN C M, MORGAN J A, HERON S F, et al. Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005 [J]. PLOS ONE, 2010, 5(11), e13969. doi:10.1371/journal.pone.0013969.
[23]OBURA D, MANGUBHAI S. Coral mortality associated with thermal fluctuations in the Phoenix Islands, 2002-2005 [J]. Coral Reefs, 2011, 30(3): 607-619.
[24]LIU G, STRONG A E, SKIRVING W. Remote sensing of sea surface temperature during 2002 [J]. EOS, 2003, 84(15): 137-144.
[25]LIU G., STRONG A E, SKIRVING W, et al. Overview of NOAA Coral Reef Watch Program's near-real-time satellite global coral bleaching monitoring activities [C]//Proceedings of 10th International Coral Reef Symposium. Okinawa, Japan, 2006: 1783-1793.
[26]聂宝符, 陈特固, 梁美桃, 等. 近百年来南海北部珊瑚生长率与海面温度变化的关系[J]. 中国科学: D辑, 1996, 26(1): 59-66.
[27]LOUGH J M, BARNES D J. Environmental controls on growth of the massive coral Porites [J]. J Exp Mar Biol Ecol, 2000, 245: 225-243.
[28]CARRICART-GANIVET J P. Sea surface temperature and the growth of the West Atlantic reef-building coral Montastraea annularis [J]. J Exp Mar Biol Ecol, 2004, 302: 249-260.
[29]MARSHALL A T, CLODE P. Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral [J]. Coral Reefs, 2004, 23: 218-224.
[30]CANTIN N E, COHEN A L, KARNAUSKAS K B, et al. Ocean warming slows coral growth in the central Red Sea [J]. Science, 2010, 329: 322-325.
[31]陈天然, 余克服, 施祺, 等. 全球变暖和核电站温排水对大亚湾滨珊瑚钙化的影响[J]. 热带海洋学报, 2011, 30(2): 1-9.
[32]COOK C B, LOGAN A, WARD J, et al. Elevated temperatures and bleaching on a high latitude coral reef: the 1988 Bermuda event [J]. Coral Reefs, 1990, 9: 45-49.
[33]CELLIERS L, SCHLEYER M H. Coral bleaching on high-latitude marginal reefs at Sodwana Bay, South Africa [J]. Mar Pollut Bull, 2002, 44: 1380-1387.
[34]KENYON J C, AEBY G S, BRAINARD R E, et al. Mass coral bleaching on high-latitude reefs in the Hawaiian Archipelago [C]//Proceedings of 10th International Coral Reef Symposium. Okinawa, Japan, 2006: 631-643.
[35]ROBERTS H H, ROUSE L J, WALKER N D, et al. Cold-water stress in Florida bay and northern Bahamas: A product of winter cold-air outbreaks [J]. J Sediment Petrol, 1982, 52(1): 145-155.
[36]COLES S L, FADLALLAH Y H. Reef coral survival and mortality at low temperatures in the Arabian Gulf: New species-specific lower temperature limits [J]. Coral Reefs, 1991, 9: 231-237.
[37]周雄, 李鸣, 郑兆勇, 等. 近50年涠洲岛5次珊瑚冷白化的海洋站SST指标变化趋势分析[J]. 热带地理, 2010, 30(6): 582-585.
Outlines

/