Marine Hydrography

Combining sea surface height data with temperature profile data to estimate global upper ocean heat content anomaly

  • LIU Zeng-hong ,
  • XU Jian-ping ,
  • SUN Chao-hui
Expand
  • 1. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China; 2. The Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China

Received date: 2012-09-21

  Revised date: 2013-01-08

  Online published: 2014-01-21

Abstract

Altimetric sea surface height data was combined with ~2000000 temperature profiles to estimate global upper 750m ocean heat content anomaly. The results showed that most of the 10-year variation signals could be resolved by in-situ temperature profiles alone, but in the regions where in-situ data were sparse (e.g., the Southern Ocean), the temperature data were not enough to resolve the changing signals. The global upper ocean had a warming rate of about 1.17 W/m2 from 1993 to 2009, and the most significant oceanic warming occurred near 40ºS. Most of the interannual variability in the global ocean heat storage was related to the El Niño and Southern Oscillation (ENSO). The variability of heat content in the tropical oceans was relatively steady, but that in the mid and high latitudes, especially in the Southern Ocean, exceeded that of the tropical oceans after 2001. As the Argo global ocean real-time observing array is fully complete, the amount of in-situ data at any moment will dramatically exceed the total amount of the data in the past decades. Combining with Jason and TOPEX/Poseidon altimeter data, the Argo data is able to estimate the variability of the global upper ocean heat content, thus providing important scientific evidence for global climate change.

Cite this article

LIU Zeng-hong , XU Jian-ping , SUN Chao-hui . Combining sea surface height data with temperature profile data to estimate global upper ocean heat content anomaly[J]. Journal of Tropical Oceanography, 2013 , 32(6) : 9 -15 . DOI: 10.11978/j.issn.1009-5470.2013.06.002

References

LEVITUS S, ANTONOV J I, WANG J, et al. Anthropogenic warming of Earth’s climate system[J]. Science, 2001, 292: 267-270.
HANSEN J, NAZARENKO L, RUEDY R, et al. Earth’s energy imbalance: confirmation and implications[J]. Science, 2005, 308: 1431-1435.
LEVITUS S J, ANTONOV I, BOYER T P. Warming of the world ocean, 1955-2003[J]. Geophys Res Lett, 2005, 32: L02604.
WILLIS J K, ROEMMICH D, CORNUELLE B. Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales[J]. J Geophys Res, 2004, 109: C12036.
LYMAN J M, SIMON A G, VIKTOR V G, et al. Robust warming of the global upper ocean[J]. Nature, 2010, 465: 334-337.
LEVITUS S, ANTONOV J I, BOYER T P, et al. Warming of the world ocean[J]. Science, 2000, 287: 2225-2229.
WHITE W, TAI C K. Inferring interannual changes in global upper ocean heat storage from TOPEX altimetry[J]. J Geophys Res, 1995, 100 (C12): 24943-24954.
LYMAN J M, JOHNSON G C. Estimating annual global upper-ocean heat content anomalies despite irregular in situ ocean sampling[J]. J Climate, 2008, 21: 5629-5641.
WUNSCH C, PONTE R M, HEIMBACH P. Decadal trends in sea level patterns: 1993-2004[J]. J Climate, 2007, 20: 5889-5911.
GILSON J, ROEMMICH D, CORNUELLE B, et al. Relationship of TOPEX/Poseidon altimetric height to steric height and circulation in the North Pacific[J]. J Geophys Res, 1998, 103: 27947-27965.
CARTON J A, GIESE B S. A reanalysis of ocean climate using simple ocean data assimilation (SODA)[J]. Mon Weather Rev, 2008, 136: 2999-3017.
DAVEY M. Enhanced ocean data assimilation and climate prediction[R]. UK: Met Office, 2005: 1-79.
GREGORY J M, BANKS H T, STOTT P A, et al. Simulated and observed decadal variability in ocean heat content[J]. Geophy Res Lett, 2004, 31: L14614.
ACHUTAR K, ISHII M, SANTER B D, et al. Simulated and observed variability in ocean temperature and heat content[J]. Proc Na Acad Sci, 2007, 104: 10768-10773.
BOYER T P, ANTONOV J I, GARCIA H, et al. World ocean database 2005, Chapter 1: Introduction[R]//LEVITUS S. NOAA Atlas NESDIS 60[R]. Washington D C: Government printing office, 2006: 1-182.
SMEED D A, ALDERSON S G. Inference of deep ocean structure from upper ocean measurements[J]. J Atmos Oceanic Technol, 1997, 14(3): 604-665.
STEPHENS C, ANTONOV J I, BOYER T P, et al. World ocean atlas 2001, Volume 1: Temperature[R]//LEVITUS S. NOAA Atlas NESDIS 49. Washington D C: Government Printing Office, 2002: 1-167.
DUCET N, LE TRAON P Y, REVERDIN G. Global high resolution mapping of ocean circulation from TOPEX/ Poseidon and ERS-1 and -2[J]. J Geophys Res, 2000, 105(C8): 19477-19498.
LYMAN J M, WILLIS J K, JOHNSON G C. Recent cooling of the upper ocean[J]. Geophys Res Lett, 2006, 33: L18604.
WILLIS J K, ROEMMICH D, CORNUELLE B. Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability[J]. J Geophys Res, 2003, 108(C9): 3292.
TRENBERTH K E. The ocean is warming, isn’t it?[J]. Nature, 2010, 465: 304.
ROEMMICH D, GILSON J. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program[J]. Prog Oceanogr, 2009, 82: 81-100.
吴晓芬. 基于Argo资料的热带西太平洋上层海洋热含量研究[D]. 杭州: 国家海洋局第二海洋研究所, 2010: 1-91.

Outlines

/